a2 United States Patent

Amarendran et al.

US009405928B2

(54) DERIVING ENCRYPTION RULES BASED ON

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

FILE CONTENT

Applicant: Comm Vault Systems, Inc., Oceanport,

NI (US)

Inventors: Arun Prasad Amarendran, Manalapan,
NJ (US); Tirthankar Chatterjee, Tinton
Falls, NJ (US); Yun Yuan, Eatontown,
NJ (US); Yongtao Liu, Eatontown, NJ

us)

Assignee: Commvault Systems, Inc., Tinton Falls,
NJ (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 6 days.

Appl. No.: 14/489,222

Filed: Sep. 17, 2014

Prior Publication Data

US 2016/0078245 Al Mar. 17, 2016

Int. CI.

GOG6F 21/62 (2013.01)

HO04L 9/00 (2006.01)

GOG6N 99/00 (2010.01)

HO04L 29/06 (2006.01)

HO4L 29/08 (2006.01)

U.S. CL

CPC ... GO6F 21/6218 (2013.01); HO4L 63/0428
(2013.01); HO4L 67/10 (2013.01)

Field of Classification Search

CPC .o GO6F 21/6218; GO6F 2221/2141,

USPC oo

HO4L 9/00

See application file for complete search history.

-

713/193, 165

(10) Patent No.: US 9,405,928 B2
(45) Date of Patent: Aug. 2, 2016
(56) References Cited

U.S. PATENT DOCUMENTS

4,084,231 A 4/1978 Capozzi et al.
4,267,568 A 5/1981 Dechant et al.
4,283,787 A 8/1981 Chambers
4417321 A 11/1983 Chang et al.
4,641,274 A 2/1987 Swank

(Continued)

FOREIGN PATENT DOCUMENTS

AU 2004227949 10/2004
CA 2498174 3/2004
(Continued)
OTHER PUBLICATIONS

Arneson, “Mass Storage Archiving in Network Environments” IEEE,
Oct. 31-Nov. 1998, pp. 45-50.

(Continued)

Primary Examiner — Haresh N Patel

(74) Attorney, Agent, or Firm — Knobbe, Martens, Olson &
Bear, LLP

(57) ABSTRACT

Data storage systems are disclosed for automatically gener-
ating encryption rules based on a set of training files that are
known to include sensitive information. The system may use
a number of heuristic algorithms to generate one or more
encryption rules for determining whether a file includes sen-
sitive information. Further, the system may apply the heuris-
tic algorithms to the content of the files, as determined by
using natural language processing algorithms, to generate the
encryption rules. Moreover, systems are disclosed that are
capable of automatically determining whether to encrypt a
file based on the generated encryption rules. The content of
the file may be determined using natural language processing
algorithms and then the encryption rules may be applied to the
content of the file to determine whether to encrypt the file.

18 Claims, 24 Drawing Sheets

BACKUP COFY

% | [T
|sueclienT | |suBcuEnt || sragy SDDATSHORLY
SRS g

= ,_571555?_1 [
E /' i

A~
s | 10 | DETERRECOIERY O
WL] TRE
POLICY A UBCLIENT 0 DAYSDALY
18188 tngs B
54 | CUPLICECOPY
g TIE
SUBCLENT LERARY @ TOVEARSIQUARTERLY
“w 168 1ngs “THB
B SUBCLENTS TARGET! RETENTIONSSCHEDULNG
SO DATAPATH
VANAGER "
L
o) CLIENT CONPUTNG
I) A
[P SUBCLENT |
n) A
POLICES EWAL SUBCLENT RMRY
STORAGE STORAGE T
1| [LPotievs SUBSYSTEM
oL
—
K2 198 gipsveTen

e
DISKLBRARY 1

OFFSITE

K 1088
_TeElERy
I
ENA
| SUBCLIENT.
1 | svecnr | |
% CONPLIANCE
! COPY

3
W

US 9,405,928 B2
Page 2

(56)

4,654,819
4,686,620
4,912,637
4,995,035
5,005,122
5,093,912
5,133,065
5,193,154
5,212,772
5,226,157
5,239,647
5,241,668
5,241,670
5,276,860
5,276,867
5,287,500
5,301,286
5,321,816
5,333,315
5,347,653
5,410,700
5,420,996
5,448,724
5,454,099
5,491,810
5,495,607
5,504,873
5,544,345
5,544,347
5,559,957
5,559,991
5,619,644
5,638,509
5,642,496
5,673,381
5,699,361
5,751,997
5,758,359
5,761,677
5,764,972
5,778,395
5,812,398
5,813,009
5,813,017
5,875,478
5,887,134
5,901,327
5,924,102
5,950,205
5,966,448
5,974,563
6,021,415
6,026,414
6,052,735
6,076,148
6,094,416
6,131,095
6,131,190
6,148,412
6,154,787
6,161,111
6,167,402
6,212,512
6,260,069
6,269,431
6,275,953
6,301,592
6,324,581
6,328,766
6,330,570
6,330,642
6,343,324
RE37,601
6,356,801
6,389,432

References Cited
U.S. PATENT DOCUMENTS

3/1987 Stiffler et al.
8/1987 Ng
3/1990 Sheedy et al.
2/1991 Cole et al.
4/1991 Griffin et al.
3/1992 Dong et al.
7/1992 Cheffetz et al.
3/1993 Kitajima et al.
5/1993 Masters
7/1993 Nakano et al.
8/1993 Anglin et al.
8/1993 Eastridge et al.
8/1993 Eastridge et al.
1/1994 Fortier et al.
1/1994 Kenley et al.
2/1994 Stoppani, Jr.
4/1994 Rajani
6/1994 Rogan et al.
7/1994 Saether et al.
9/1994 Flynn et al.
4/1995 Fecteau et al.
5/1995 Aoyagi
9/1995 Hayashi et al.
9/1995 Myers et al.
2/1996 Allen
2/1996 Pisello et al.
4/1996 Martin et al.
8/1996 Carpenter et al.
8/1996 Yanai et al.
9/1996 Balk
9/1996 Kanfi
4/1997 Crockett et al.
6/1997 Dunphy et al.
6/1997 Kanfi
9/1997 Huai et al.
12/1997 Ding et al.
5/1998 Kullick et al.
5/1998 Saxon
6/1998 Senator et al.
6/1998 Crouse et al.
7/1998 Whiting et al.
9/1998 Nielsen
9/1998 Johnson et al.
9/1998 Morris
2/1999 Blumenau
3/1999 Ebrahim
5/1999 Ofek
7/1999 Perks
9/1999 Aviani, Jr.
10/1999 Namba et al.
10/1999 Beeler, Ir.
2/2000 Cannon et al.
2/2000 Anglin
4/2000 Ulrich et al.
6/2000 Kedem et al.
7/2000 Ying
10/2000 Low et al.
10/2000 Sidwell
11/2000 Cannon et al.
11/2000 Urevig et al.
12/2000 Mutalik et al.
12/2000 Yeager
4/2001 Barney et al.
7/2001 Anglin
7/2001 Dunham
8/2001 Vahalia et al.
10/2001 Aoyama et al.
11/2001 Xu et al.
12/2001 Long
12/2001 Crighton et al.
12/2001 Carteau
1/2002 Hubis et al.
E 3/2002 Eastridge et al.
3/2002 Goodman et al.
5/2002 Pothapragada et al.

O e e D 0 3 0 B e B 0 D B 0 0 0 B B B 0 0 e 0 B 0 e D B D 0 0 0 B 0 B 0 0 D B B 0 0 D B D 0 0 B D 0 e 0 >

6,418,478
6,421,711
6,487,561
6,496,949
6,519,679
6,538,669
6,542,972
6,564,228
6,658,436
6,658,526
6,721,767
6,760,723
6,959,327
7,003,641
7,035,880
7,130,970
7,162,496
7,171,558
7,174,433
7,209,972
7,246,207
7,266,200
7,266,699
7,277,941
7,315,923
7,315,924
7,343,453
7,380,072
7,389,311
7,395,282
7,401,154
7,409,509
7,440,982
7,447,692
7,454,569
7,480,803
7,484,054
7,490,207
7,496,766
7,500,053
7,506,102
7,529,782
7,536,291
7,543,125
7,546,324
7,581,077
7,603,386
7,606,844
7,613,748
7,613,752
7,617,253
7,617,262
7,620,710
7,627,776
7,636,743
7,651,593
7,657,550
7,660,807
7,661,028
7,739,381
7,739,459
7,747,579
7,757,043
7,769,961
7,783,895
7,801,864
7,802,067
7,809,914
7,861,050
8,009,833
8,131,964
8,140,786
8,140,847
8,156,086
8,170,995
8,190,647

8,229,954
8,230,195

7/2002
7/2002
11/2002
12/2002
2/2003
3/2003
4/2003
5/2003
12/2003
12/2003
4/2004
7/2004
10/2005
2/2006
4/2006
10/2006
1/2007
1/2007
2/2007
4/2007
7/2007
9/2007
9/2007
10/2007
1/2008
1/2008
3/2008
5/2008
6/2008
7/2008
7/2008
8/2008
10/2008
11/2008
11/2008
1/2009
1/2009
2/2009
2/2009
3/2009
3/2009
5/2009
5/2009
6/2009
6/2009
8/2009
10/2009
10/2009
11/2009
11/2009
11/2009
11/2009
11/2009
12/2009
12/2009
1/2010
2/2010
2/2010
2/2010
6/2010
6/2010
6/2010
7/2010
8/2010
8/2010
9/2010
9/2010
10/2010
12/2010
8/2011
3/2012
3/2012
3/2012
4/2012
5/2012
5/2012

7/2012
7/2012

Ignatius et al.
Blumenau et al.
Ofek et al.
Kanevsky et al.
Devireddy et al.
Lagueux, Jr. et al.
Ignatius et al.
O’Connor
Oshinsky et al.
Nguyen et al.
De Meno et al.
Oshinsky et al.
Vogl et al.
Prahlad et al.
Crescenti et al.
Devassy et al.
Amarendran et al.
Mourad et al.
Kottomtharayil et al.
Ignatius et al.
Kottomtharayil et al.
Lambert
Newman et al.
Ignatius et al.
Retnamma et al.
Prahlad et al.
Prahlad et al.
Kottomtharayil et al.
Crescenti et al.
Crescenti et al.
Ignatius et al.
Devassy et al.
Luetal.
Oshinsky et al.
Kavuri et al.
Marballi
Kottomtharayil et al.
Amarendran et al.
Kitamura
Kavuri et al.
Lev-Ran et al.
Prahlad et al.
Vijayan Retnamma et al.
Gokhale
Prahlad et al.
Ignatius et al.
Amarendran et al.
Kottomtharayil
Brockway et al.
Prahlad et al.
Prahlad et al.
Prahlad et al.
Kottomtharayil et al.
Petruzzo
Erofeev
Prahlad et al.
Prahlad et al.
Prahlad et al.
Erofeev
Ignatius et al.
Kottomtharayil et al.
Prahlad et al.
Kavuri et al.
Kottomtharayil et al.
Hori et al.
Prahlad et al.
Prahlad et al.
Kottomtharayil et al.
Retnamma et al.
Uchikawa
Retnamma et al.
Bunte et al.
Wu
Luetal.
Prahlad et al.
Pereira GO6F 21/562
707/749

Kottomtharayil et al.
Amarendran et al.

US 9,405,928 B2
Page 3

(56)

8,285,681
8,306,931

8,307,177
8,364,652
8,370,542
8,392,677
8,401,982

8,413,244

8,417,908
8,429,428
8,510,573
8,538,020
8,612,439
2003/0046572
2004/0181689

2004/0210539
2004/0218804

2005/0027999
2005/0091655
2005/0108526
2005/0180573
2005/0246510
2005/0257062
2006/0034459
2006/0120520
2006/0224846
2006/0242296
2007/0057958
2007/0100913
2007/0240217

2007/0245108
2008/0005380
2008/0037777
2008/0091747
2008/0091894
2008/0229037
2008/0263355

2008/0320319
2009/0021403

2009/0031128
2009/0110198
2009/0222907
2009/0319534
2010/0031017
2010/0235649
2010/0287383
2010/0299490
2010/0306175
2010/0313039
2010/0332479
2010/0333116
2011/0037766

2011/0087851
2011/0271279
2012/0072713
2012/0084523
2012/0150818
2012/0150826
2012/0166745

References Cited

U.S. PATENT DOCUMENTS

B2 10/2012
Bl* 11/2012
B2 112012
B2 1/2013
B2 2/2013
B2 3/2013
Bl 3/2013
Bl 4/2013
B2 4/2013
B2 4/2013
B2 8/2013
Bl 9/2013
B2 12/2013
Al 3/2003
Al 9/2004
Al 10/2004
Al* 11/2004
Al 2/2005
Al 4/2005
Al 5/2005
Al 8/2005
Al 11/2005
Al 11/2005
Al 2/2006
Al 6/2006
Al 10/2006
Al 10/2006
Al 3/2007
Al 5/2007
Al* 10/2007
Al 10/2007
Al 1/2008
Al 2/2008
Al 4/2008
Al 4/2008
Al 9/2008
Al* 10/2008
Al 12/2008
Al 1/2009
Al 1/2009
Al 4/2009
Al 9/2009
Al 12/2009
Al 2/2010
Al 9/2010
Al 11/2010
Al 11/2010
Al 12/2010
Al 12/2010
Al 12/2010
Al 12/2010
Al 2/2011
Al 4/2011
Al 112011
Al 3/2012
Al 4/2012
Al 6/2012
Al 6/2012
Al 6/2012

Prahlad et al.
Bowman GO6N 3/0454
706/20
Prahlad et al.
Vijayan et al.
Luetal.
Bunte et al.
Satishccoeeerens GO6F 21/566
706/12
Nachenberg HOA4L 63/145
713/188
Retnamma et al.
Ignatius et al.
Muller et al.
Miller
Prahlad et al.
Newman et al.
Kiyoto ..cccooevenn HO041 63/164
726/1
Tkeda et al.
Affleck .ooovvviiiiiins C30B 7/00
382/141
Pelly et al.
Probert et al.
Robertson
Pelly et al.
Retnamma et al.
Ignatius et al.
Uchikawa
Suzuki et al.
Amarendran et al.
Woolard et al.
Bucher et al.
Sumner
Tuvellcccvevvvvnnnne GOGF 21/56
726/24
Yasaki et al.
Kawasaki et al.
Ignatius et al.
Prahlad et al.
Retnamma et al.
Bunte et al.
Witt v GOGF 21/6218
713/165
Muller et al.
Chanccoeeene, HO3M 7/3084
341/50
French et al.
Garimella et al.
Guichard
Gokhale
Gokhale et al.
Jeffries et al.
Conte
Attarde et al.
Johnson et al.
Ignatius et al.
Prahlad et al.
Prahlad et al.
Judy e GO6T 11/206
345/440
Retnamma et al.
Pate
Begum et al.
Littlefield et al.
Vijayan Retnamma et al.
Vijayan Retnamma et al.
Retnamma et al.

2012/0179656 Al 7/2012 Bunte et al.

2012/0185691 Al 7/2012 Begum et al.

2012/0198559 Al 82012 Venkata Naga Ravi

2012/0218275 Al 82012 Wu

2013/0086381 Al 4/2013 Thomas et al.

2013/0097421 Al 4/2013 Lim

2013/0179405 Al 7/2013 Bunte et al.

2013/0198522 Al 82013 Kohno et al.

2013/0311785 Al 11/2013 Ignatius et al.

2014/0053002 Al 2/2014 Muller

2014/0053252 Al 2/2014 Kelsey

2014/0090061 Al* 3/2014 Avasarala ... GO6F 21/56

726/24

2014/0115329 Al 4/2014 Sturonas et al.

2014/0281517 Al 9/2014 Erofeev et al.

2014/0281518 Al 9/2014 Erofeev et al.

2014/0281519 Al 9/2014 Erofeev et al.

2014/0281545 Al 9/2014 Erofeev et al.

2014/0304524 Al 10/2014 Gokhale et al.

2015/0139559 Al* 52015 Smith GO6K 9/6215
382/225

2015/0178660 Al* 6/2015 Nowak GO06Q 10/06398
705/7.42

FOREIGN PATENT DOCUMENTS

DE 69415115.7 8/1999
DE 60020978 .4 4/2006
EP 0259912 3/1988
EP 0405926 1/1991
EP 0467546 1/1992
EP 0541281 5/1993
EP 0774715 5/1997
EP 0809184 11/1997
EP 0899662 3/1999
EP 0981090 2/2000
EP 1384135 1/2004
GB 2447361 9/2008
JP 4198050 12/2008
JP 4267443 5/2009
WO WO 95/13580 5/1995
WO WO 99/12098 3/1999
WO WO 2006/052872 5/2006
WO WO 2004/023317 12/2008
OTHER PUBLICATIONS

Cabrera, et al. “ADSM: A Multi-Platform, Scalable, Back-up and
Archive Mass Storage System,” Digest of Papers, Compcon ’95,
Proceedings of the 40th IEEE Computer Society International Con-
ference, Mar. 5, 1995-Mar. 9, 1995, pp. 420-427, San Francisco, CA.
Eitel, “Backup and Storage Management in Distributed Heteroge-
neous Environments,” IEEE, 1994, pp. 124-126, Dec. 31.

IBM Technical Disclosure Bulletin, vol. 24, No. 5, Oct. 1981 New
York, US, pp. 2404-2406, K.L. Huff, “Data Set Usage Sequence
Number”.

Rosenblum et al., “The Design and Implementation of a Log-Struc-
ture File System,” Operating Systems Review SIGOPS, vol. 25, No.
S, May 1991, New York, US, pp. 1-15.

Armstead et al., “Implementation of a Campus-Wide Distributed
Mass Storage Service: The Dream vs. Reality,” IEEE, 1995, pp.
190-199.

Gait, “The Optical File Cabinet: A Random-Access File system for
Write-Once Optical Disks,” IEEE Computer, vol. 21, No. 6, pp. 11-22
(1988).

Jander, “Launching Storage-Area Net,” Data Communications, US,
McGraw Hill, NY, vol. 27, No. 4(Mar. 21, 1998), pp. 64-72.

* cited by examiner

U.S. Patent Aug. 2, 2016 Sheet 1 of 24 US 9,405,928 B2

100\\\\
104
102 {
\ r—]

CLIENT COMPUTING PRIMARY
STORAGE

10 DEVICE(S)
DEVICE(S)

| APPLICATION(S) > 12
: PRIMARY
17 DATA]

- —

PRIMARY
STORAGE
SUBSYSTEM

SECONDARY
STORAGE 106
SUBS/YSTEM A é
SECONDARY
18 SECONDARY STORAGE
STORAGE COMPUTING | DEVICE(S)

DEVICE(S) 6
SECONDARY||

COPIES
~

y

FIG. 1A

U.S. Patent Aug. 2, 2016 Sheet 2 of 24 US 9,405,928 B2

w
™ ™ DN [e— NN D
erirm
> || o D i
128 Metal Meta2 Metad Metad Metad

= = Mela 122 5 Metad
(X2 Meta10

Meta11

PRIMARY 117
STORAGE __/ 129C
SUBSYSTEM

SECONDARY
STORAGE
SUBSYSTEM 145

134A 1348 134C
1337
i |~
133 1204_%%1 198’
: 1338'_ | e
122 o] 1207

1290 ~ T ~—
Meta2
Meta10 Metah
Meta1 Metab

G186 —0uo

US 9,405,928 B2

Sheet 3 of 24

Aug. 2, 2016

U.S. Patent

9Ll

8Ll

C\,_m_._.w>wm:w
JOVHO1S
AYVANOO3S

NJLSASENS
JOVHOLS

7 XY
I

475

£sl
Nl
|| S31d00 - X3aNI
(S)30IA30 |4 > VIQ3n
JOVHOLS
AdVANOI3S (S)301A3a ONILNINOD
JOVHOLS AYVANOD3S
A
q 80} \ 90}
i
\I\} A ’\ - -
v1lva
L g Ni/_ | o:/_ |
(S)F0A3a [ﬁ aﬁ_%%/* «—H (SINOILYOITddY
JOVHOLS L
AdYNIEd
(S)301A3A ONILNDINOD IN3ITD
0l \ 201

sl

X3ANI

0S)
S31910d

8yl

N =
| oml
pe N
8SL | | 30v4yaINi
¥3sn
gl IN3OV IN3OY
N sg0r “LINOW

J YIOVNYI JOVHOLS J

/ /
961 bGl

orl

00}

U.S. Patent Aug. 2, 2016

PRIMARY
STORAGE
DEVICE

102
3

Sheet 4 of 24

CLIENT COMPUTING

110

DEVICE(S)

PRIMARY
STORAGE
DEVICE

102
3

US9,

405,928 B2

CLIENT COMPUTING

142

DATA
AGENT(S) |

APPLICATION S

110

APPLICATION S

DEVICE(S)

142

DATA
AGENT(S)

140 R =¥

\ .
STORAGE
MANAGER

106
.

—
-
-
-
-

SECONDARY STORAGE
COMPUTING DEVICE

f152

144
MEDIA
AGENT

(—117
PRIMARY
STORAGE

SUBSYSTEM

SECONDARY
STORAGE
SUBSYSTEM

118

SECONDARY STORAGE
COMP%?NGDE

=

VICE
A4

SECONDARY STORAGE
COMPUTING DEVICE
15 1l

MEDIA

MEDIA
AGENT

108

SECONDARY
STORAGE DEVICE

FIG. 1D

SECONDARY
STORAGE DEVICE

U.S. Patent Aug. 2, 2016 Sheet 5 of 24 US 9,405,928 B2

/1 0 BACKUP COPY
S EVAL || DIk
™| Isuscuent | |suBcLENT | |Lisrary | [MA! J0DAYSHOURLY
148A N6 168 q0sA A
A 57 | ‘DISASTER RECOVERY COPY____
STORAGE TS EWAL || TAPE
POLICY A SUBCLIENT | |SUBCLIENT || LigraRY | | MA' 60 DAYS/DAILY
166 168 <08 4B
164 | -COMPLIANCE COPY SR
] | EMAL TAPE | | w2 10 YEARS/QUARTERLY
SUBCLIENT LIBRARY
_ 168 — <does 1448
140\ SUB-CLIENTS DH%E\TT/H RETENTION/SCHEDULING
STORAGE
MANAGER 0
146
/,]\ “{CLIENT CONPUTING
M2A | DEVICE
_—/ P
" 08 | FSDA_ |« FS SUBCLIENT
1484 "7
) I -
SOLIES @@ o | EMALLDA |« EMAIL SUBCLIENT PRIMARY
STORAGE STORAGE
|| el /SUBSYSTEM
NDEX | H ® ® SECONDARY
" | 1% suBSYSTEM
7 MAT 150 DISK LIBRARY N
150 L~ | I 116A 118
"BACKUP COPY 1
[INDEX | | [EWAL
| | SUBCLIENT |
I FS
15 L sueclien |
I Tt N CTTTTTTTT ___________________-i
| T 08,
| WA 15 TRPELBRARY ||
! —| @ [DISASTER y4ep |
! INDEX \4 RECOEV'\I;/E{'[copv+ i
l | SUBCLIENT | ! !
! 153 Apmcoms |
. ® | | SUBCLENT | ||
1 L= —_
1 r=o o= --|116C 1
. 4 COMPLIANCE 'L/ !
! | COPY i
! | TEWAL | .
| OFFSITE LsuBoLENT | 1|
' Mmoo I
1

US 9,405,928 B2

Sheet 6 of 24

Aug. 2, 2016

U.S. Patent

Nsg| *°° N-S4 A'SH N'SH A'SH
elep eep || (@0 (@9) eep | | (@) (@Ye9)
Bijuspr | Ejep Ejep Biuspl . Ejep Elep
anes e aMeg anl anes
174} ¢l 8.l 9Ll ¥l ¢l pLl ¢l 9.l 9Ll ¥l ¢l 174} ¢l
elep Jspesy Blep Japesy
Jsinuspl - Jaynuspl JBIynuspl Jalyuspl
/\l/
VL
N uespod| N 1elS ¥90|g N LE)S Y00|g
N 9|qeaauesuI-a|bug A 9|qesoue)suI-o|6ug A 9gesaueisui-gibuig
- .l 8114 Aoy - :l 81l BNy - :l 8114 8AYaly
peoyfed - passaudwo) peayfed : passalduon peojfed | passadwo)
- ;pordfioug - ;perdiiou - ;pordhioug
ay€9 1ybus aYe9 fus ge9 1yfusT
j/| BJep Weass Z/| Jopesy weals f/| Blep Weal)s 7| Jopeay weans j/| Blep Weals z/| Jopeay weans
'/\/
0Ll

U.S. Patent Aug. 2, 2016 Sheet 7 of 24 US 9,405,928 B2
182
V_001 \
184
5 | Chunk_001 \
Metadata file 186 180
/‘_/
) Non-Sl data
Metadata index file 188
L) Index to metadata file
Container file 001 190
L | BT B2 B3 |eee| Bn
*
Container file 002 191
L | B1 B2 B3 |eee| Bn
*
Container index file 192
L, 001(781 0011_82 e 0021_B1 002 _Bn
185

>

L | Chunk_002 \

Metadata file 187

Non-SI : : Non-SI
data Link Link data
Metadata index file 189
Index to metadata file
Container file 001 193
B1|B2 |B3 |B4 [B5| eee |Bn
Container index file 194
001.B1 | 001 B2 | ., [001_Bn
1 0 1

FIG. 1H

US 9,405,928 B2

Sheet 8 of 24

Aug. 2, 2016

U.S. Patent

Z01-1

z-

Old

30IA3d DVHOLS AdVINIAd

s34 s34
qaLasdonal | G3LdAHONINN
e Ziz 4 ol
A 4
IWNZLSAS 311
\ 4
062~ P44
s31Ny
NOILAAMONT | > HOLINOW I1NAON
3714 NOILdANO3A
807
aANIONT 31NAon
s3INy SS300V
W3LSAS A NoILdAMONE | | 3714 39no3s [
NOILYDILNIHLNY 9¢¢ ¥z
o0z~ o/ | Fnaow N3OV
NOILJAMONT | | 20V4y3LNI
~ .
mw_ﬂwm/\ ¢t~ wanNa w3 0ce
vON\ A
N.v_‘\ A h 4

P

oLl

3J2IA3A ONILNGINOD IN3IITO

pl[| SNOILYOIlddY

/oom

U.S. Patent

300
Y

NO

Y

Aug. 2, 2016

Sheet 9 of 24

ENCRYPTION DETERMINATION PROCESS

{ START ’

v

MONITOR FILE WRITES
302

A 4

IS
AFILEWRITE
DETECTED?
304

ACCESS FILE METADATA
ASSOCIATED WITH THE FILE
306

v

ACCESS ENCRYPTION
RULES
308

DOES
THE FILE METADATA
SATISFY THE ENCRYPTION
RULES?
310

YES

A 4

ALLOW FILE WRITE TO
PROCEED
312

US 9,405,928 B2

LOCK CACHE COPIES OF
THE FILE
314

v

ENCRYPT THE FILE
316

A 4

STORE METADATA
ASSOCIATED WITH
ENCRYPTION STATUS OF
THE FILE
318

FIG. 3

U.S. Patent

400
N

Aug. 2, 2016

Sheet 10 of 24

US 9,405,928 B2

ENCRYPTED FILE DISPLAY PROCESS

START

ACCESS ENCRYPTED FILE
402

v

IDENTIFY FILE TYPE OF THE
PRE-ENCRYPTED VERSION
OF THE ENCRYPTED FILE
404

v

IDENTIFY APPLICATION
PROGRAM ASSOCIATED
WITH THE PRE-ENCRYPTED
FILE
406

v

DISPLAY REFERENCE TO
ENCRYPTED FILE SUCH
THAT THE ENCRYPTED FILE
APPEARS AS IF IT WERE
THE PRE-ENCRYPTED FILE
408

FIG. 4

U.S. Patent Aug. 2, 2016 Sheet 11 of 24 US 9,405,928 B2

ENCRYPTED FILE ACCESS PROCESS

(stART)
500
N

A4

AUTHENTICATE USER
502

v

RECEIVE REQUEST TO
ACCESS AFILE ETORED IN
PRIMARY STORAGE
504

\ 4
DETERMINE ENCRYPTION
STATUS OF THE FILE
506

!

IS
NO THE FILE YES

ENCRYPTED?
508
\ 4

GRANT FILE ACCESS TO
THE USER
510

A 4
AUTHENTICATE USER
512

\ 4
DECRYPT THE FILE
514

h 4
PROVIDE ACCESS TO THE
DECRYPTED FILE
516

FIG. 5

U.S. Patent Aug. 2, 2016 Sheet 12 of 24

600
X

FILE BACKUP PROCESS

START ’

A 4

IDENTIFY FILE FOR BACKUP
ON SECONDARY STORAGE
602

v

ACCESS THE FILE FROM
PRIMARY STORAGE
604

IS

NO THE FILE YES

h 4

ENCRYPT THE FILE
610

A 4

BACKUP THE ENCRYPTED
FILE ON SECONDARY
STORAGE
612

US 9,405,928 B2

ENCRYPTED?
606

A 4

BACKUP THE FILE ON
SECONDARY STORAGE
WITHOUT PERFORMING
FURTHER ENCRYPTION

PROCESSING
608

FIG. 6

U.S. Patent Aug. 2, 2016 Sheet 13 of 24 US 9,405,928 B2

FILE RESTORATION PROCESS

(staRrT)
700
N

4
IDENTIFY FILE TO BE
RESTORED FROM
SECONDARY STORAGE BY
A MEDIA AGENT
702

v

IDENTIFY A SECONDARY
STORAGE DEVICE WITH A
COPY OF THE FILE
704

v

RETRIEVE THE FILE FROM
THE SECONDARY STORAGE
DEVICE
706

h 4

ACCESS METADATA
ASSOCIATED WITH THE FILE
708

THE MEDIA AGENT YES

ENCRYPT THE FILE? v
IDENTIFY THE ENCRYPTION 710 DECRYPT THE FILE USING A
ALGORITHM USED BY THE DECRYPTION ALGORITHM
ENCRYPTING SYSTEM TO ASSOCIATED WITH THE
ENCRYPT THE FILE MEDIA AGENT
716 712
A 4
DECRYPT THE FILE USING A v
DECRYPTION ALGORITHM PROVIDE A RECIPIENT
ASSOCIATED WITH THE
SYSTEM WITH ACCESS TO
ENCRYPTION ALGORITHM > THE UNENCRYPTED FILE
USED BY THE ENCRYPTING 714
SYSTEM
718

FIG. 7

U.S. Patent

Aug. 2, 2016

800
N

Sheet 14 of 24

FILE RESTORATION PROCESS

START

IDENTIFY FILE TO BE
RESTORED FROM
SECONDARY STORAGE BY
A MEDIA AGENT
802

v

IDENTIFY A SECONDARY
STORAGE DEVICE WITH A
COPY OF THE FILE
804

!

RETRIEVE THE FILE FROM
THE SECONDARY STORAGE
DEVICE
806

IS

NO THE FILE

PROVIDE A RECIPIENT
SYSTEM WITH ACCESS TO
THE FILE
810
A
YES
A

ENCRYPTED?
808

DOES
THE FILE MIMIC AN

UNENCRYPTED FILE?
812

MODIFY THE ENCRYPTED
FILE TO MIMIC AN

UNENCRYPTED FILE
814

FIG. 8

US 9,405,928 B2

US 9,405,928 B2

Sheet 15 of 24

Aug. 2, 2016

U.S. Patent

056~

30IA3Q IOVHOLS AHVNING
A 4
—> N3LSAS ITI
s3NY 086~ 828 26— A
NOILJAHONS HOLINOW IINAon
3114 NOILJANO3A
806
3NIONI FINAon
s3INY ss300V | |
1 NOILdAYONZ | | 3114 3uno3s [
96 7¢6
IINaon INJOV
NOILdAYONT | | 3ovayaLNi
— T
€67 NgOY V.Iva WILSAS F115 066
08~
A 4
NILSAS SINIOY R
NOILYOILNIHLNY viva [»|| SNOLLVOMadY
906" 56

256

32IA3A ONILNGINOD LN3ITO

/oom

U.S. Patent Aug. 2, 2016 Sheet 16 of 24 US 9,405,928 B2

1000\ USER KEY ENCRYPTION PROCESS

OBTAIN ACCESS TO ASYMMETRIC KEY

PAIRS FOR A SET OF USERS
START AUTHORIZED TO ACCESS A SET OF
FILES ON A PRIMARY STORAGE
1002

v

OBTAIN A PASSPHRASE FOR EACH
USER OF THE SET OF USERS
1004

v

HASH EACH PASSPHRASE
1006

v

ENCRYPT EACH USER'S PRIVATE KEY
USING THE HASHED PASSPHRASE
ASSOCIATED WITH THE USER
1008

v

OBTAIN ACCESS TO AN ASYMMETRIC
KEY PAIR FOR THE CLIENT
COMPUTING DEVICE
1010

v

PROVIDE THE PRIVATE KEY FOR THE
CLIENT COMPUTING DEVICE TO A
STORAGE MANAGER FOR
ENCRYPTICON
1012

v

RECEIVE AN ENCRYPTED COPY OF
THE PRIVATE KEY ASSOCIATED WITH
THE CLIENT COMPUTING DEVICE
1014

v

STORE THE ENCRYPTED USER
PRIVATE KEYS AND THE ENCRYPTED
PRIVATE KEY ASSOCIATED WITH THE

CLIENT COMPUTING DEVICE
1016

DISCARD THE PRIVATE KEY, THE
PASSPHRASE, AND THE HASHED
PASSPHRASE FOR EACH USER AND
THE PRIVATE KEY FOR THE CLIENT
COMPUTING DEVICE
1018

FIG. 10A

U.S. Patent

1 050\

Aug. 2, 2016 Sheet 17 of 24

DETERMINE A FILE IS TO BE

1052

ENCRYPTED FOR STORAGE AT A

START PRIMARY STORAGE

v

1054

OBTAIN A DATA ENCRYPTION KEY

v

ENCRYPT THE FILE USING THE
DATA ENCRYPTION KEY
1056

ACCESS A PUBLIC KEY FOR EACH
USER AUTHORIZED TO ACCESS
THE FILE

1058

v

ENCRYPT A COPY OF THE DATA
ENCRYPTION KEY USING THE
PUBLIC KEY FOR EACH USER

AUTHORIZED TO ACCESS THE FILE

1060

ACCESS A PUBLIC KEY
ASSOCIATED WITH THE CLIENT
COMPUTING DEVICE
1062

v

ENCRYPT A COPY OF THE DATA
ENCRYPTION KEY USING THE
PUBLIC KEY ASSOCIATED WITH
THE CLIENT COMPUTING DEVICE
1064

DISCARD THE DATA ENCRYPTION
KEY
1066

v

EMBED EACH ENCRYPTED DATA
ENCRYPTION KEY WITH THE
ENCRYPTED FILE
1068

v

EMBED ENCRYPTED PRIVATE KEYS
FOR EACH USER AND THE CLIENT
COMPUTING DEVICE WITH THE
ENCRYPTED FILE

1070

FIG. 10B

US 9,405,928 B2

PRIMARY STORAGE FILE ENCRYPTION PROCESS

U.S. Patent Aug. 2, 2016 Sheet 18 of 24 US 9,405,928 B2

1100\ FILE BACKUP PROCESS

START

IDENTIFY A FILE FOR
BACKUP TO A SECONDARY
STORAGE DEVICE
1102

IS
THE FILE
ENCRYPTED?
1104

NO

A 4 h 4

PROVIDE THE FILE TO THE ACCESS AN ENCRYPTED
R T ot PRIVATE KEY ASSOCIATED
WITH A CLIENT COMPUTING
DEVICE
EViS DEVICE
1108

v

PROVIDE THE ENCRYPTED
PRIVATE KEY TO A
STORAGE MANAGER
1110

v

RECEIVE THE PRIVATE KEY
FROM THE STORAGE
MANAGER
1112

v

EXTRACT AN ENCRYPTED

PROVIDE THE DECRYPTED DATA ENCRYPTION KEY
FILE TO THE SECONDARY ASSOCIATED WITH THE
STORAGE DEVICE CLIENT COMPUTING DEVICE
1120 FROM THE FILE
1114
DECRYPT THE FILE USING DECRYPT THE ENCRYPTED
THE DECRYPTED DATA DATA ENCRYPTION KEY
ENCRYPTION KEY | USING THE PRIVATE KEY
1118 1116

FIG. 11

U.S. Patent

1200\

Aug. 2, 2016

Sheet 19 of 24

US 9,405,928 B2

CLIENT PASSPHRASE REPLACEMENT PROCESS

START

ACCESS AN ENCRYPTED
PRIVATE KEY ASSOCIATED
WITH A CLIENT COMPUTING
DEVICE
1202

v

PROVIDE THE ENCRYPTED
PRIVATE KEY TO A
STORAGE MANAGER
1204

RECEIVE A NEW
ENCRYPTED PRIVATE KEY
FROM THE STORAGE
MANAGER
1206

FIG. 12

U.S. Patent

130&\\

Aug. 2, 2016

Sheet 20 of 24

CLIENT KEY ROTATION PROCESS

START

y
ACCESS AN ENCRYPTED
PRIVATE KEY ASSOCIATED
WITH A CLIENT COMPUTING
DEVICE FROM A FILE
1302

v

OBTAIN A COPY OF THE
DATA ENCRYPTION KEY
1304

v

DISCARD ENCRYPTED
PRIVATE KEY
1306

v

OBTAIN NEW ASYMMETRIC
KEY PAIR FOR THE CLIENT
COMPUTING DEVICE
1308

v

ENCRYPT THE COPY OF
THE DATA ENCRYPTION
KEY WITH THE NEW PUBLIC
KEY
1310

v

STORE ENCRYPTED DATA
ENCRYPTION KEY WITH THE
FILE

1312

v

PROVIDE THE NEW PRIVATE
KEY TO A STORAGE
MANAGER
1314

v

RECEIVE NEW ENCRYPTED
PRIVATE KEY
1316

FIG. 13

US 9,405,928 B2

US 9,405,928 B2

Sheet 21 of 24

Aug. 2, 2016

U.S. Patent

05711

30IAIA FOVHOLS AdVYINIEd

YOy~ 20PL
HOLVYHANEO | | oo quny
S31NA INILNOD
NOILdAYONT WILISAS T4 |«
s3Iy 086~ 8¢ e A
NOLLJAHONS HOLINOW IINAOW
3714 NOILdAYO3A
806 «
aANIONI IINAOW
s31NY $S300V
A NOILdAYONZ | | 3114 Jun03s [,
9c6 26
IINAONW NIV
NOILAAYONT | | 3OoV4uaLNI
~ N
€067 NTOV Y.LYA INILSAS T715 0¢6
06~
\ 4
INF1LSAS SINIDY N
NOILVIILNIHLNY viva [> || SNOWLVOddY
906~ 756

766~

J0IA3A ONILNGINOD LNJI'O

/og |

U.S. Patent Aug. 2, 2016 Sheet 22 of 24 US 9,405,928 B2

1500\ ENCRYPTION RULES GENERATION PROCESS

START

RECEIVE THE IDENTITY OF A
SET OF FILES THAT INCLUDE
SENSITIVE INFORMATION
1502

y

USING A NUMBER OF NATURAL
LANGUAGE PROCESSING
ALGORITHMS, DETERMINE A
SET OF DATA TOKENS
ASSOCIATED WITH EACH FILE
1504

y

USING A NUMBER OF
HEURISTIC ALGORITHMS,
DETERMINE A SET OF RULES
FOR IDENTIFYING FILES WITH
SENSITIVE INFORMATION
BASED ON THE SET OF DATA
TOKENS ASSOCIATED WITH
EACH FILE
1506

;

PRESENT THE SET OF RULES
TO A USER FOR CONFIRMATION
1508

;

STORE THE SET OF RULES IN
AN ENCRYPTION RULES
REPOSITORY
1510

;

ASSOCIATE A SET OF CONTEXT
RULES WITH EACH RULE IN THE
SET OF RULES

1512

FIG. 15

U.S. Patent Aug. 2, 2016 Sheet 23 of 24 US 9,405,928 B2

CONTENT-BASED ENCRYPTION PROCESS

160
O\ { START ’

) 4
MONITOR FILE CREATION/
—» MODIFICATION ACTIVITY

1602

IS
A FILE CREATION
MODIFICATION EVENT
DETECTED?
1604

NO

ACCESS ASET OF
ENCRYPTION RULES
1606

A 4
USING A NUMBER OF
NATURAL LANGUAGE
PROCESSING ALGORITHMS,
DETERMINE A SET OF DATA
TOKENS ASSOCIATED WITH
THE FILE
1608

y

APPLY THE SET OF
ENCRYPTION RULES TO
THE SET OF DATA TOKENS
TO DETERMINE WHETHER

TO PROTECT THE FILE
1610

IS
THE FILE TO BE
PROTECTED?
1612

ENCRYPT THE FILE
1614

v

IDENTIFY THE FILE AS
PROTECTED
1616

FIG. 16

U.S. Patent Aug. 2, 2016 Sheet 24 of 24 US 9,405,928 B2

CONTEXT-BASED ENCRYPTION PROCESS

170
™

ACCESS A SET OF
ENCRYPTION RULES
1702

v

MONITOR FILE CONTEXT
FOR A PROTECTED FILE p——m—
1704

FILE CONTEXT
SATISFY AN ENCRYPTION
RULE ASSOCIATED WITH
THE FILE?
1706

ENCRYPT THE FILE
1708

FIG. 17

US 9,405,928 B2

1
DERIVING ENCRYPTION RULES BASED ON
FILE CONTENT

INCORPORATION BY REFERENCE TO ANY
PRIORITY APPLICATIONS

Any and all applications, if any, for which a foreign or
domestic priority claim is identified in the Application Data
Sheet of the present application are hereby incorporated by
reference under 37 CFR 1.57.

BACKGROUND

Businesses worldwide recognize the commercial value of
their data and seek reliable, cost-effective ways to protect the
information stored on their computer networks while mini-
mizing impact on productivity. Protecting information is
often part of a routine process that is performed within an
organization. A company might back up critical computing
systems such as databases, file servers, web servers, and so on
as part of a daily, weekly, or monthly maintenance schedule.
The company may similarly protect computing systems used
by each of its employees, such as those used by an accounting
department, marketing department, engineering department,
and so forth.

Given the rapidly expanding volume of data under man-
agement, companies also continue to seek innovative tech-
niques for managing data growth, in addition to protecting
data. For instance, companies often implement migration
techniques for moving data to lower cost storage over time
and data reduction techniques for reducing redundant data,
pruning lower priority data, etc. Enterprises also increasingly
view their stored data as a valuable asset. Along these lines,
customers are looking for solutions that not only protect and
manage, but also leverage their data. For instance, solutions
providing data analysis capabilities, information manage-
ment, improved data presentation and access features, and the
like, are in increasing demand.

For many users, maintaining the security of electronic data
is an ever-increasing concern and is growing ever more
expensive. Preventing the leakage of data is of particular
importance to enterprise users who often have access to pri-
vate customer data, including financial information (e.g.,
social security numbers, credit card data, etc.). The chal-
lenges related to maintaining data security has continued to
increase as more and more enterprise users utilize mobile
devices to store and/or access data within an enterprise envi-
ronment, and outside of the enterprise environment.

Today, to help protect data and to increase the accessibility
of the data both throughout the enterprise environment and
outside of the enterprise environment, many users and orga-
nizations store data on secondary storage devices or on a
device in a network (e.g., cloud storage devices). In many
cases, the data is encrypted on the secondary storage device.
Although data is more secure when stored in an encrypted
form on the secondary storage device, securing the data on the
secondary storage device does not prevent malicious users
from accessing sensitive data on a primary storage device
(e.g., a client computing device).

SUMMARY

For purposes of summarizing the disclosure, certain
aspects, advantages and novel features of the inventions have
been described herein. It is to be understood that not neces-
sarily all such advantages may be achieved in accordance
with any particular embodiment of the inventions disclosed

10

20

25

40

45

55

60

2

herein. Thus, the inventions disclosed herein may be embod-
ied or carried out in a manner that achieves or optimizes one
advantage or group of advantages as taught herein without
necessarily achieving other advantages as may be taught or
suggested herein.

Certain embodiments described herein include a method of
automatically generating encryption rules using machine
learning techniques. In some cases, the method may be per-
formed by computer hardware comprising one or more pro-
cessors. The method can include accessing, by a rules gen-
eration system comprising computer hardware, a set of one or
more training files that include content designated as sensitive
information. Further, the method can include applying, by the
rules generation system, one or more processing algorithms
to each training file included in the set of training files to
obtain a set of data tokens for each training file. Each of the set
of data tokens for a training file may correspond to a portion
of'the training file. The method may further include applying,
by the rules generation system, one or more algorithms to the
set of data tokens for each training file to determine a set of
encryption rules for identifying files with sensitive informa-
tion. In addition, the method may include storing the set of
encryption rules in an encryption rules repository accessible
for one or more systems for determining whether to encrypt a
file.

In some embodiments, the one or more processing algo-
rithms comprise natural language processing algorithms.
Further, the one or more algorithms may comprise heuristic
algorithms. In some implementations, at least one of the one
or more processing algorithms comprises a natural language
processing algorithm and wherein applying the one or more
processing algorithms comprises performing at least one of
the following natural language processing tasks: automatic
summarization, coreference resolution, discourse analysis,
machine translation, morphological segmentation, named
entity recognition, natural language understanding, optical
character recognition, part-of-speech tagging, parsing, rela-
tionship extraction, sentence boundary disambiguation, sen-
timent analysis, topic segmentation and recognition, word
segmentation, word sense disambiguation, singular value
decomposition, latent semantic analysis, latent Dirichlet allo-
cation, pachinko allocation, and probabilistic latent semantic
analysis.

In certain implementations, applying the one or more algo-
rithms to the set of data tokens comprises generating a pro-
spective encryption rule based on the set of data tokens.
Further, the method can include performing the prospective
encryption rule with respect to the set of training files and
determining a percentage of training files from the set of
training files identified for encryption using the prospective
encryption rule. Responsive to the percentage of training files
identified for encryption satisfying a threshold, the method
may include adding the prospective encryption rule to the set
of encryption rules.

In some cases, applying the one or more algorithms to the
set of data tokens for each training file comprises applying the
one or more algorithms on a file-by-file basis, separately to
each set of data tokens. Further, applying the one or more
algorithms to the set of data tokens for each training file may
comprise applying the one or more algorithms to a cumulative
set of data tokens formed by combining the sets of data tokens
from a plurality of training files.

With some implementations, the method includes present-
ing the set of encryption rules to a user for confirmation,
wherein storing the set of encryption rules comprises storing
encryption rules from the set of encryption rules confirmed by
the user. Further, the method may include filtering data tokens

US 9,405,928 B2

3

identified as non-sensitive by a user from the set of data
tokens for each training file prior to applying the one or more
algorithms.

In some implementations, the method includes monitoring
file creation and/or file modification activity. In response to
detecting a file creation and/or modification event with
respect to a file, the method can include determining whether
the file satisfies an encryption rule from the set of encryption
rules. Further, in response to determining that the file satisfies
the encryption rule from the set of encryption rules, the
method can include identifying the file as protected. More-
over, the method may include determining whether the file
satisfies a context condition associated with the encryption
rule. In response to determining that the context condition is
satisfied, the method may include encrypting the file.

In certain embodiments, a system for automatically gener-
ating encryption rules using machine learning techniques is
disclosed. The system can include a content analyzer com-
prising computer hardware, the content analyzer configured
to access a set of training files that include content designated
as sensitive information. Further, the content analyzer may be
configured to use one or more processing algorithms with
respect to the set of training files to obtain a set of data tokens
for each training file. Moreover, the system may include an
encryption rules generator comprising computer hardware.
The encryption rules generator can be configured to use one
or more algorithms to determine a set of encryption rules
based on the set of data tokens obtained for each training file.

In some implementations, the system further includes an
encryption rules repository configured to store the set of
encryption rules. The encryption rules repository may be
accessible by one or more computing systems.

In some cases, the encryption rules generator is further
configured to determine a context condition for an encryption
rule of the set of encryption rules. The context condition may
identify when to apply the encryption rule to a file. In addi-
tion, the encryption rules generator may be configured to
associate the context condition with the encryption rule. In
some cases, the context condition comprises at least one of a
user, a department that includes the user within an entity, a
geographic location of a computing device storing the file, a
network location of a computing device storing the file, and a
device type of the computing device.

With some implementations, the encryption rules genera-
tor is further configured to generate a prospective encryption
rule based on an aggregated set of data tokens. The aggre-
gated set of data tokens may be based on the set of data tokens
for each training file. Further, the encryption rules generator
may be further configured to perform the prospective encryp-
tion rule using the set of training files and determine a number
of training files from the set of training files identified for
encryption based on the prospective encryption rule. Respon-
sive to the number of training files identified for encryption
satisfying a threshold, the encryption rules generator can add
the prospective encryption rule to the set of encryption rules.

In some embodiments, the encryption rules generator is
configured to determine an encryption rule based on the set of
data tokens obtained for a plurality of training files. Further,
the encryption rules generator may be further configured to
present a prospective encryption rule to a user and receive an
input from the user responsive to presenting the prospective
encryption rule to the user. In addition, the encryption rules
generator may be further configured to determine whether to
include the prospective encryption rule in the set of encryp-
tion rules based on the input received from the user.

In some implementations, the content analyzer is further
configured to remove a data token from a set of data tokens of

25

40

45

50

65

4

a training file based on an identified set of non-sensitive data
tokens. Further, the system may include a file monitor con-
figured to monitor creation of a file. In addition, the system
may include an encryption rules engine configured to deter-
mine whether the file satisfies an encryption rule from the set
of encryption rules. Moreover, the system may include an
encryption module configured to encrypt the file in response
to the file satisfying the encryption rule.

BRIEF DESCRIPTION OF THE DRAWINGS

Throughout the drawings, reference numbers are re-used to
indicate correspondence between referenced elements. The
drawings are provided to illustrate embodiments of the inven-
tive subject matter described herein and not to limit the scope
thereof.

FIG. 1A is a block diagram illustrating an exemplary infor-
mation management system.

FIG. 1B is a detailed view of a primary storage device, a
secondary storage device, and some examples of primary data
and secondary copy data.

FIG. 1C is a block diagram of an exemplary information
management system including a storage manager, one or
more data agents, and one or more media agents.

FIG. 1D is a block diagram illustrating a scalable informa-
tion management system.

FIG. 1E illustrates certain secondary copy operations
according to an exemplary storage policy.

FIGS. 1F-1H are block diagrams illustrating suitable data
structures that may be employed by the information manage-
ment system.

FIG. 2 is a block diagram illustrating an example of a client
computing environment including a client computing device
and a primary storage device.

FIG. 3 illustrates an example embodiment of an encryption
determination process.

FIG. 4 illustrates an example embodiment of an encrypted
file display process.

FIG. 5 illustrates an example embodiment of an encrypted
file access process.

FIG. 6 illustrates an example embodiment of a file backup
process.

FIG. 7 illustrates an example embodiment of a file resto-
ration process.

FIG. 8 illustrates a second example embodiment of a file
restoration process.

FIG. 9 is a block diagram illustrating a second example of
a client computing environment including a client computing
device and a primary storage device.

FIG. 10A illustrates an example embodiment of a user key
encryption process.

FIG. 10B illustrates an example embodiment of a primary
storage file encryption process.

FIG. 11 illustrates a second example embodiment of a file
backup process.

FIG. 12 illustrates an example embodiment of a client
passphrase replacement process.

FIG. 13 illustrates an example embodiment of a client key
replacement process.

FIG. 14 is a block diagram illustrating a third example of a
client computing environment including a client computing
device and a primary storage device.

FIG. 15 illustrates an example embodiment of an encryp-
tion rules generation process.

FIG. 16 illustrates an example embodiment of a content-
based encryption process.

US 9,405,928 B2

5

FIG. 17 illustrates an example embodiment of a context-
based encryption process.

DETAILED DESCRIPTION

To help prevent sensitive data from being exposed, files are
often stored in an encrypted format. However, encrypting
files can be a costly process. It often takes a non-negligible
amount of time and processing power to encrypt a file. More-
over, even if the amount of resources required to encrypt a
given individual file is relatively small, the cumulative
resources required to encrypt a large number of files is non-
negligible. Further, the initial encryption of a file is usually
not the final interaction with the file. Instead, the file may be
accessed a number of times. Each time the file is accessed, the
file needs to be decrypted and when the access is complete,
the file may be re-encrypted. Thus, the amount of time and
computing resources utilized to protect a set of files can grow
over time, particularly as an organization or entity generates
more and more files with sensitive data that the entity desires
to store in an encrypted format.

Some entities attempt to protect their data by encrypting all
files of a particular type (e.g., word processing files, or
spreadsheets). However, using this approach, a large number
of files that do not include sensitive information may also be
encrypted in some cases, resulting in a large waste of com-
puting resources and time. Other entities may be encrypted
based on the particular file locations the file is stored to.
However, this approach may in some cases create user over-
head because users must determine if a file includes sensitive
information and must remember to store the file in one of the
encryption designated locations.

To reduce the overhead relating to the encryption and
access of encrypted files, entities and/or users may be selec-
tive in deciding which files are to be encrypted. Users may
identify each file to be encrypted, or may identify a location
(e.g., adirectory) of files to be encrypted. While this approach
of designating files for encryption may be effective for some
entities (e.g., small businesses or individuals), it may be less
effective for other entities, such as entities with a relatively
large number of users that may access and edit a file. Having
a large number of users edit or create files can make it more
difficult to systematically identify the files that are to be
encrypted because, for example, different users may have
different concepts of what data is to be protected or one user
may add sensitive data to afile that another user understood to
not include sensitive data.

One solution to the above issues is to make a determination
of whether to encrypt a file based on the content of the file
itself rather than, for example, the file type or file location.
Embodiments disclosed herein include one or more systems
and methods that are capable of analyzing the content of files
to determine whether the files include sensitive information
or data. Sensitive information can include any data that is
deemed by an entity to be stored in an encrypted format. The
entity may include the owner or creator of the data, or some
other party (e.g., a customer, an oversight entity, a govern-
ment entity, etc.). Some non-limiting examples of sensitive
data include social security numbers, credit card numbers,
addresses, phone numbers, invoices, customer lists, design
specifications, business plans, and the like. It should be under-
stood that sensitive data may differ from one entity to the next.
For example, customer lists may be considered sensitive
information to one entity, but not to another entity. Thus,
different entities may desire to encrypt different types of files
and/or files including different types of content.

10

15

20

25

30

35

40

45

50

55

60

65

6

Certain embodiments disclosed herein use one or more
algorithms for determining whether a file includes sensitive
information. In some cases, the algorithms can include natu-
ral language processing algorithms. Advantageously, in cer-
tain embodiments, the determination of whether a file
includes sensitive information can be performed automati-
cally by applying encryption rules to a file to determine
whether the file satisfies the encryption rule. The encryption
rule can include rules for identifying files that include sensi-
tive information. Further, the encryption rule can include
processes for encrypting files that are identified to include
sensitive information.

In some embodiments, the encryption rules are also gen-
erated automatically. Systems disclosed herein can access a
set of files (e.g., training files) that are known to include
sensitive information and use a number of algorithms to gen-
erate one or more encryption rules for determining whether a
file includes sensitive information. In some cases, the number
of algorithms can include heuristic algorithms. Further, the
systems described herein can use machine learning processes
to improve the encryption rules over time. In some cases, the
systems disclosed herein may also access a set of files that are
known to not include sensitive information. By combining
files with sensitive information and files without sensitive
information, improved encryption rules can be generated
compared to encryption rules generated based only on train-
ing files with sensitive information.

Examples of systems and methods for providing improved
file protection and encryption are described in further detail
herein with reference to FIGS. 2-17. Further, the systems,
components, and functionality described with respect to
FIGS. 2-17 may be configured and/or incorporated into infor-
mation management systems such as those described herein
with respect to FIGS. 1A-1H.

Advantageously, in certain embodiments, by determining
whether to encrypt a file based on the content of the file,
information management systems can protect and encrypt
files faster than systems that encrypt all files, all files of a
particular type, or all files in a particular location because, for
example, files without sensitive information that are of the
same type or in the same location as files with sensitive
information can be omitted from the encryption process. Fur-
ther, in certain embodiments, users can save time by avoiding
identifying files for encryption and/or avoid segregating pro-
tected files from unprotected files.

Information Management System Overview

With the increasing importance of protecting and leverag-
ing data, organizations simply cannot afford to take the risk of
losing critical data. Moreover, runaway data growth and other
modern realities make protecting and managing data an
increasingly difficult task. There is therefore a need for effi-
cient, powerful, and user-friendly solutions for protecting and
managing data.

Depending on the size of the organization, there are typi-
cally many data production sources which are under the pur-
view of tens, hundreds, or even thousands of employees or
other individuals. In the past, individual employees were
sometimes responsible for managing and protecting their
data. A patchwork of hardware and software point solutions
has been applied in other cases. These solutions were often
provided by different vendors and had limited or no interop-
erability.

Certain embodiments described herein provide systems
and methods capable of addressing these and other shortcom-
ings of prior approaches by implementing unified, organiza-
tion-wide information management. FIG. 1A shows one such
information management system 100, which generally

US 9,405,928 B2

7

includes combinations of hardware and software configured
to protect and manage data and metadata, which is generated
and used by the various computing devices in information
management system 100. The organization that employs the
information management system 100 may be a corporation or
other business entity, non-profit organization, educational
institution, household, governmental agency, or the like.

‘Generally, the systems and associated components

described herein may be compatible with and/or provide
some or all of the functionality of the systems and corre-
sponding components described in one or more of the follow-
ing U.S. patents and patent application publications assigned
to CommVault Systems, Inc., each of which is hereby incor-
porated in its entirety by reference herein:

U.S. Pat. No. 7,035,880, entitled “Modular Backup and
Retrieval System Used in Conjunction With a Storage
Area Network™;

U.S. Pat. No. 7,107,298, entitled “System And Method For
Archiving Objects In An Information Store”;

U.S. Pat. No. 7,246,207, entitled “System and Method for
Dynamically Performing Storage Operations in a Com-
puter Network™;

U.S. Pat. No. 7,315,923, entitled “System And Method For
Combining Data Streams In Pipelined Storage Opera-
tions In A Storage Network™;

U.S. Pat. No. 7,343,453, entitled “Hierarchical Systems
and Methods for Providing a Unified View of Storage
Information”;

U.S.Pat.No. 7,395,282, entitled “Hierarchical Backup and
Retrieval System”;

U.S. Pat. No. 7,529,782, entitled “System and Methods for
Performing a Snapshot and for Restoring Data”;

U.S. Pat. No. 7,617,262, entitled “System and Methods for
Monitoring Application Data in a Data Replication Sys-
tem”;

U.S. Pat. No. 7,747,579, entitled “Metabase for Facilitat-
ing Data Classification”;

U.S. Pat. No. 8,156,086, entitled “Systems And Methods
For Stored Data Verification™;

U.S. Pat. No. 8,170,995, entitled “Method and System for
Offline Indexing of Content and Classifying Stored
Data”;

U.S. Pat. No. 8,229,954, entitled “Managing Copies Of
Data”;

U.S. Pat. No. 8,230,195, entitled “System And Method For
Performing Auxiliary Storage Operations™;

U.S. Pat. No. 8,285,681, entitled “Data Object Store and
Server for a Cloud Storage Environment, Including Data
Deduplication and Data Management Across Multiple
Cloud Storage Sites™;

U.S. Pat. No. 8,307,177, entitled “Systems And Methods
For Management Of Virtualization Data”;

U.S. Pat. No. 8,364,652, entitled “Content-Aligned,
Block-Based Deduplication™;

U.S. Pat. No. 8,578,120, entitled “Block-Level Single
Instancing”;

U.S. Pat. Pub. No. 2006/0224846, entitled “System and
Method to Support Single Instance Storage Opera-
tions™;

U.S. Pat. Pub. No. 2009/0319534, entitled “Application-
Aware and Remote Single Instance Data Management”;

U.S. Pat. Pub. No. 2012/0150818, entitled “Client-Side
Repository in a Networked Deduplicated Storage Sys-
tem”; and

U.S. Pat. Pub. No. 2012/0150826, entitled “Distributed
Deduplicated Storage System”.

10

15

20

25

30

35

40

45

50

55

60

65

8

The information management system 100 can include a
variety of different computing devices. For instance, as will
be described in greater detail herein, the information manage-
ment system 100 can include one or more client computing
devices 102 and secondary storage computing devices 106.

Computing devices can include, without limitation, one or
more: workstations, personal computers, desktop computers,
or other types of generally fixed computing systems such as
mainframe computers and minicomputers. Other computing
devices can include mobile or portable computing devices,
such as one or more laptops, tablet computers, personal data
assistants, mobile phones (such as smartphones), and other
mobile or portable computing devices such as embedded
computers, set top boxes, vehicle-mounted devices, wearable
computers, etc. Computing devices can include servers, such
as mail servers, file servers, database servers, and web serv-
ers.

In some cases, a computing device includes virtualized
and/or cloud computing resources. For instance, one or more
virtual machines may be provided to the organization by a
third-party cloud service vendor. Or, in some embodiments,
computing devices can include one or more virtual
machine(s) running on a physical host computing device (or
“host machine”) operated by the organization. As one
example, the organization may use one virtual machine as a
database server and another virtual machine as a mail server,
both virtual machines operating on the same host machine.

A virtual machine includes an operating system and asso-
ciated virtual resources, and is hosted simultaneously with
another operating system on a physical host computer (or host
machine). A hypervisor (typically software, and also known
in the art as a virtual machine monitor or a virtual machine
manager or “VMM?”) sits between the virtual machine and the
hardware of the physical host machine. One example of
hypervisor as virtualization software is ESX Server, by
VMware, Inc. of Palo Alto, Calif.; other examples include
Microsoft Virtual Server and Microsoft Windows Server
Hyper-V, both by Microsoft Corporation of Redmond, Wash.,
and Sun xVM by Oracle America Inc. of Santa Clara, Calif. In
some embodiments, the hypervisor may be firmware or hard-
ware or a combination of software and/or firmware and/or
hardware.

The hypervisor provides to each virtual operating system
virtual resources, such as a virtual processor, virtual memory,
a virtual network device, and a virtual disk. Each virtual
machine has one or more virtual disks. The hypervisor typi-
cally stores the data of virtual disks in files on the file system
of'the physical host machine, called virtual machine disk files
(in the case of VMware virtual servers) or virtual hard disk
image files (in the case of Microsoft virtual servers). For
example, VMware’s ESX Server provides the Virtual
Machine File System (VMFS) for the storage of virtual
machine disk files. A virtual machine reads data from and
writes data to its virtual disk much the same way that an actual
physical machine reads data from and writes data to an actual
disk.

Examples of techniques for implementing information
management techniques in a cloud computing environment
are described in U.S. Pat. No. 8,285,681, which is incorpo-
rated by reference herein. Examples of techniques for imple-
menting information management techniques in a virtualized
computing environment are described in U.S. Pat. No. 8,307,
177, also incorporated by reference herein.

The information management system 100 can also include
a variety of storage devices, including primary storage
devices 104 and secondary storage devices 108, for example.
Storage devices can generally be of any suitable type includ-

US 9,405,928 B2

9

ing, without limitation, disk drives, hard-disk arrays, semi-
conductor memory (e.g., solid state storage devices), network
attached storage (NAS) devices, tape libraries or other mag-
netic, non-tape storage devices, optical media storage
devices, DNA/RNA-based memory technology, combina-
tions of the same, and the like. In some embodiments, storage
devices can form part of a distributed file system. In some
cases, storage devices are provided in a cloud (e.g., a private
cloud or one operated by a third-party vendor). A storage
device in some cases comprises a disk array or portion
thereof.

The illustrated information management system 100
includes one or more client computing device 102 having at
least one application 110 executing thereon, and one or more
primary storage devices 104 storing primary data 112. The
client computing device(s) 102 and the primary storage
devices 104 may generally be referred to in some cases as a
primary storage subsystem 117. A computing device in an
information management system 100 that has a data agent
142 installed and operating on it is generally referred to as a
client computing device 102 (or, in the context of a compo-
nent of the information management system 100 simply as a
“client”).

Depending on the context, the term “information manage-
ment system” can refer to generally all of the illustrated
hardware and software components. Or, in other instances,
the term may refer to only a subset of the illustrated compo-
nents.

For instance, in some cases, the information management
system 100 generally refers to a combination of specialized
components used to protect, move, manage, manipulate, ana-
lyze, and/or process data and metadata generated by the client
computing devices 102. However, the information manage-
ment system 100 in some cases does not include the under-
lying components that generate and/or store the primary data
112, such as the client computing devices 102 themselves, the
applications 110 and operating system operating on the client
computing devices 102, and the primary storage devices 104.
As an example, “information management system” may
sometimes refer to one or more of the following components
and corresponding data structures: storage managers, data
agents, and media agents. These components will be
described in further detail below.

Client Computing Devices

There are typically a variety of sources in an organization
that produce data to be protected and managed. As just one
illustrative example, in a corporate environment such data
sources can be employee workstations and company servers
such as a mail server, a web server, a database server, a
transaction server, or the like. In the information management
system 100, the data generation sources include the one or
more client computing devices 102.

The client computing devices 102 may include any of the
types of computing devices described above, without limita-
tion, and in some cases the client computing devices 102 are
associated with one or more users and/or corresponding user
accounts, of employees or other individuals.

The information management system 100 generally
addresses and handles the data management and protection
needs for the data generated by the client computing devices
102. However, the use of this term does not imply that the
client computing devices 102 cannot be “servers” in other
respects. For instance, a particular client computing device
102 may act as a server with respect to other devices, such as
other client computing devices 102. As just a few examples,
the client computing devices 102 can include mail servers, file
servers, database servers, and web servers.

10

15

20

25

30

35

40

45

50

55

60

65

10

Each client computing device 102 may have one or more
applications 110 (e.g., software applications) executing
thereon which generate and manipulate the data that is to be
protected from loss and managed. The applications 110 gen-
erally facilitate the operations of an organization (or multiple
affiliated organizations), and can include, without limitation,
mail server applications (e.g., Microsoft Exchange Server),
file server applications, mail client applications (e.g.,
Microsoft Exchange Client), database applications (e.g.,
SQL, Oracle, SAP, Lotus Notes Database), word processing
applications (e.g., Microsoft Word), spreadsheet applica-
tions, financial applications, presentation applications,
graphics and/or video applications, browser applications,
mobile applications, entertainment applications, and so on.

The client computing devices 102 can have at least one
operating system (e.g., Microsoft Windows, Mac OS X, i0S,
IBM z/OS, Linux, other Unix-based operating systems, etc.)
installed thereon, which may support or host one or more file
systems and other applications 110.

The client computing devices 102 and other components in
information management system 100 can be connected to one
another via one or more communication pathways 114. For
example, a first communication pathway 114 may connect (or
communicatively couple) client computing device 102 and
secondary storage computing device 106; a second commu-
nication pathway 114 may connect storage manager 140 and
client computing device 102; and a third communication
pathway 114 may connect storage manager 140 and second-
ary storage computing device 106, etc. (see, e.g., FIG. 1A and
FIG. 1C). The communication pathways 114 can include one
or more networks or other connection types including one or
more of the following, without limitation: the Internet, a wide
area network (WAN), a local area network (LAN), a Storage
Area Network (SAN), a Fibre Channel connection, a Small
Computer System Interface (SCSI) connection, a virtual pri-
vate network (VPN), a token ring or TCP/IP based network,
an intranet network, a point-to-point link, a cellular network,
awireless data transmission system, a two-way cable system,
an interactive kiosk network, a satellite network, a broadband
network, a baseband network, a neural network, a mesh net-
work, an ad hoc network, other appropriate wired, wireless, or
partially wired/wireless computer or telecommunications
networks, combinations of the same or the like. The commu-
nication pathways 114 in some cases may also include appli-
cation programming interfaces (APIs) including, e.g., cloud
service provider APIs, virtual machine management APIs,
and hosted service provider APIs. The underlying infrastruc-
ture of communication paths 114 may be wired and/or wire-
less, analog and/or digital, or any combination thereof; and
the facilities used may be private, public, third-party pro-
vided, or any combination thereof, without limitation.
Primary Data and Exemplary Primary Storage Devices

Primary data 112 according to some embodiments is pro-
duction data or other “live” data generated by the operating
system and/or applications 110 operating on a client comput-
ing device 102. The primary data 112 is generally stored on
the primary storage device(s) 104 and is organized via a file
system supported by the client computing device 102. For
instance, the client computing device(s) 102 and correspond-
ing applications 110 may create, access, modify, write, delete,
and otherwise use primary data 112. In some cases, some or
all of the primary data 112 can be stored in cloud storage
resources (e.g., primary storage device 104 may be a cloud-
based resource).

Primary data 112 is generally in the native format of the
source application 110. According to certain aspects, primary
data 112 is an initial or first (e.g., created before any other

US 9,405,928 B2

11

copies or before at least one other copy) stored copy of data
generated by the source application 110. Primary data 112 in
some cases is created substantially directly from data gener-
ated by the corresponding source applications 110.

The primary storage devices 104 storing the primary data
112 may be relatively fast and/or expensive technology (e.g.,
a disk drive, a hard-disk array, solid state memory, etc.). In
addition, primary data 112 may be highly changeable and/or
may be intended for relatively short term retention (e.g.,
hours, days, or weeks).

According to some embodiments, the client computing
device 102 can access primary data 112 from the primary
storage device 104 by making conventional file system calls
via the operating system. Primary data 112 may include struc-
tured data (e.g., database files), unstructured data (e.g., docu-
ments), and/or semi-structured data. Some specific examples
are described below with respect to FIG. 1B.

It can be useful in performing certain tasks to organize the
primary data 112 into units of different granularities. In gen-
eral, primary data 112 can include files, directories, file sys-
tem volumes, data blocks, extents, or any other hierarchies or
organizations of data objects. As used herein, a “data object”
can refer to both (1) any file that is currently addressable by a
file system or that was previously addressable by the file
system (e.g., an archive file) and (2) a subset of such a file
(e.g., a data block).

As will be described in further detail, it can also be useful
in performing certain functions of the information manage-
ment system 100 to access and modify metadata within the
primary data 112. Metadata generally includes information
about data objects or characteristics associated with the data
objects. For simplicity herein, it is to be understood that,
unless expressly stated otherwise, any reference to primary
data 112 generally also includes its associated metadata, but
references to the metadata do not include the primary data.

Metadata can include, without limitation, one or more of
the following: the data owner (e.g., the client or user that
generates the data), the last modified time (e.g., the time of the
most recent modification of the data object), a data object
name (e.g., a file name), a data object size (e.g., a number of
bytes of data), information about the content (e.g., an indica-
tion as to the existence of a particular search term), user-
supplied tags, to/from information for email (e.g., an email
sender, recipient, etc.), creation date, file type (e.g., format or
application type), last accessed time, application type (e.g.,
type of application that generated the data object), location/
network (e.g., a current, past or future location of the data
object and network pathways to/from the data object), geo-
graphic location (e.g., GPS coordinates), frequency of change
(e.g., a period in which the data object is modified), business
unit (e.g., a group or department that generates, manages or is
otherwise associated with the data object), aging information
(e.g., a schedule, such as a time period, in which the data
object is migrated to secondary or long term storage), boot
sectors, partition layouts, file location within a file folder
directory structure, user permissions, owners, groups, access
control lists [ACLs]), system metadata (e.g., registry infor-
mation), combinations of the same or other similar informa-
tion related to the data object.

In addition to metadata generated by or related to file
systems and operating systems, some of the applications 110
and/or other components of the information management
system 100 maintain indices of metadata for data objects,
e.g., metadata associated with individual email messages.
Thus, each data object may be associated with corresponding
metadata. The use of metadata to perform classification and
other functions is described in greater detail below.

10

20

25

30

35

40

45

50

12

Each of the client computing devices 102 are generally
associated with and/or in communication with one or more of
the primary storage devices 104 storing corresponding pri-
mary data 112. A client computing device 102 may be con-
sidered to be “associated with” or “in communication with” a
primary storage device 104 if it is capable of one or more of:
routing and/or storing data (e.g., primary data 112) to the
particular primary storage device 104, coordinating the rout-
ing and/or storing of data to the particular primary storage
device 104, retrieving data from the particular primary stor-
age device 104, coordinating the retrieval of data from the
particular primary storage device 104, and moditying and/or
deleting data retrieved from the particular primary storage
device 104.

The primary storage devices 104 can include any of the
different types of storage devices described above, or some
other kind of suitable storage device. The primary storage
devices 104 may have relatively fast [/O times and/or are
relatively expensive in comparison to the secondary storage
devices 108. For example, the information management sys-
tem 100 may generally regularly access data and metadata
stored on primary storage devices 104, whereas data and
metadata stored on the secondary storage devices 108 is
accessed relatively less frequently.

Primary storage device 104 may be dedicated or shared. In
some cases, each primary storage device 104 is dedicated to
an associated client computing device 102. For instance, a
primary storage device 104 in one embodiment is a local disk
drive of a corresponding client computing device 102. In
other cases, one or more primary storage devices 104 can be
shared by multiple client computing devices 102, e.g., via a
network such as in a cloud storage implementation. As one
example, a primary storage device 104 can be a disk array
shared by a group of client computing devices 102, such as
one of the following types of disk arrays: EMC Clariion,
EMC Symmetrix, EMC Celerra, Dell EquallLogic, IBM X1V,
NetApp FAS, HP EVA, and HP 3PAR.

The information management system 100 may also include
hosted services (not shown), which may be hosted in some
cases by an entity other than the organization that employs the
other components of the information management system
100. For instance, the hosted services may be provided by
various online service providers to the organization. Such
service providers can provide services including social net-
working services, hosted email services, or hosted productiv-
ity applications or other hosted applications). Hosted services
may include software-as-a-service (SaaS), platform-as-a-ser-
vice (PaaS), application service providers (ASPs), cloud ser-
vices, or other mechanisms for delivering functionality via a
network. As it provides services to users, each hosted service
may generate additional data and metadata under manage-
ment of the information management system 100, e.g., as
primary data 112. In some cases, the hosted services may be
accessed using one of the applications 110. As an example, a
hosted mail service may be accessed via browser running on
a client computing device 102. The hosted services may be
implemented in a variety of computing environments. In
some cases, they are implemented in an environment having
a similar arrangement to the information management system
100, where various physical and logical components are dis-
tributed over a network.

Secondary Copies and Exemplary Secondary Storage
Devices

The primary data 112 stored on the primary storage devices
104 may be compromised in some cases, such as when an
employee deliberately or accidentally deletes or overwrites
primary data 112 during their normal course of work. Or the

US 9,405,928 B2

13

primary storage devices 104 can be damaged, lost, or other-
wise corrupted. For recovery and/or regulatory compliance
purposes, it is therefore useful to generate copies of the pri-
mary data 112. Accordingly, the information management
system 100 includes one or more secondary storage comput-
ing devices 106 and one or more secondary storage devices
108 configured to create and store one or more secondary
copies 116 of the primary data 112 and associated metadata.
The secondary storage computing devices 106 and the sec-
ondary storage devices 108 may sometimes be referred to as
a secondary storage subsystem 118.

Creation of secondary copies 116 can help in search and
analysis efforts and meet other information management
goals, such as: restoring data and/or metadata if an original
version (e.g., of primary data 112) is lost (e.g., by deletion,
corruption, or disaster); allowing point-in-time recovery;
complying with regulatory data retention and electronic dis-
covery (e-discovery) requirements; reducing utilized storage
capacity; facilitating organization and search of data; improv-
ing user access to data files across multiple computing
devices and/or hosted services; and implementing data reten-
tion policies.

The client computing devices 102 access or receive pri-
mary data 112 and communicate the data, e.g., over one or
more communication pathways 114, for storage in the sec-
ondary storage device(s) 108.

A secondary copy 116 can comprise a separate stored copy
of application data that is derived from one or more earlier-
created, stored copies (e.g., derived from primary data 112 or
another secondary copy 116). Secondary copies 116 can
include point-in-time data, and may be intended for relatively
long-term retention (e.g., weeks, months or years), before
some or all of the data is moved to other storage or is dis-
carded.

In some cases, a secondary copy 116 is a copy of applica-
tion data created and stored subsequent to at least one other
stored instance (e.g., subsequent to corresponding primary
data 112 or to another secondary copy 116), in a different
storage device than at least one previous stored copy, and/or
remotely from at least one previous stored copy. In some other
cases, secondary copies can be stored in the same storage
device as primary data 112 and/or other previously stored
copies. For example, in one embodiment a disk array capable
of performing hardware snapshots stores primary data 112
and creates and stores hardware snapshots of the primary data
112 as secondary copies 116. Secondary copies 116 may be
stored in relatively slow and/or low cost storage (e.g., mag-
netic tape). A secondary copy 116 may be stored in a backup
or archive format, or in some other format different than the
native source application format or other primary data format.

In some cases, secondary copies 116 are indexed so users
can browse and restore at another point in time. After creation
of a secondary copy 116 representative of certain primary
data 112, a pointer or other location indicia (e.g., a stub) may
beplaced in primary data 112, or be otherwise associated with
primary data 112 to indicate the current location on the sec-
ondary storage device(s) 108 of secondary copy 116.

Since an instance of a data object or metadata in primary
data 112 may change over time as it is modified by an appli-
cation 110 (or hosted service or the operating system), the
information management system 100 may create and manage
multiple secondary copies 116 of a particular data object or
metadata, each representing the state of the data object in
primary data 112 at a particular point in time. Moreover, since
an instance of a data object in primary data 112 may eventu-
ally be deleted from the primary storage device 104 and the
file system, the information management system 100 may

10

15

20

25

30

35

40

45

50

55

60

65

14

continue to manage point-in-time representations of that data
object, even though the instance in primary data 112 no longer
exists.

For virtualized computing devices the operating system
and other applications 110 of the client computing device(s)
102 may execute within or under the management of virtual-
ization software (e.g., a VMM), and the primary storage
device(s) 104 may comprise a virtual disk created on a physi-
cal storage device. The information management system 100
may create secondary copies 116 of the files or other data
objects ina virtual disk file and/or secondary copies 116 of the
entire virtual disk file itself (e.g., of an entire .vmdk file).

Secondary copies 116 may be distinguished from corre-
sponding primary data 112 in a variety of ways, some of
which will now be described. First, as discussed, secondary
copies 116 can be stored in a different format (e.g., backup,
archive, or other non-native format) than primary data 112.
For this or other reasons, secondary copies 116 may not be
directly useable by the applications 110 of the client comput-
ing device 102, e.g., via standard system calls or otherwise
without modification, processing, or other intervention by the
information management system 100.

Secondary copies 116 are also in some embodiments
stored on a secondary storage device 108 that is inaccessible
to the applications 110 running on the client computing
devices 102 (and/or hosted services). Some secondary copies
116 may be “offline copies,” in that they are not readily
available (e.g., not mounted to tape or disk). Offline copies
can include copies of data that the information management
system 100 can access without human intervention (e.g.,
tapes within an automated tape library, but not yet mounted in
adrive), and copies that the information management system
100 can access only with at least some human intervention
(e.g., tapes located at an offsite storage site).

The Use of Intermediate Devices for Creating Secondary
Copies

Creating secondary copies can be a challenging task. For
instance, there can be hundreds or thousands of client com-
puting devices 102 continually generating large volumes of
primary data 112 to be protected. Also, there can be signifi-
cant overhead involved in the creation of secondary copies
116. Moreover, secondary storage devices 108 may be special
purpose components, and interacting with them can require
specialized intelligence.

In some cases, the client computing devices 102 interact
directly with the secondary storage device 108 to create the
secondary copies 116. However, in view of the factors
described above, this approach can negatively impact the
ability of the client computing devices 102 to serve the appli-
cations 110 and produce primary data 112. Further, the client
computing devices 102 may not be optimized for interaction
with the secondary storage devices 108.

Thus, in some embodiments, the information management
system 100 includes one or more software and/or hardware
components which generally act as intermediaries between
the client computing devices 102 and the secondary storage
devices 108. In addition to off-loading certain responsibilities
from the client computing devices 102, these intermediate
components can provide other benefits. For instance, as dis-
cussed further below with respect to FIG. 1D, distributing
some of the work involved in creating secondary copies 116
can enhance scalability.

The intermediate components can include one or more
secondary storage computing devices 106 as shown in FIG.
1A and/or one or more media agents, which can be software
modules operating on corresponding secondary storage com-

US 9,405,928 B2

15

puting devices 106 (or other appropriate computing devices).
Media agents are discussed below (e.g., with respect to FIGS.
1C-1E).

The secondary storage computing device(s) 106 can com-
prise any of the computing devices described above, without
limitation. In some cases, the secondary storage computing
device(s) 106 include specialized hardware and/or software
componentry for interacting with the secondary storage
devices 108.

To create a secondary copy 116 involving the copying of
data from the primary storage subsystem 117 to the secondary
storage subsystem 118, the client computing device 102 in
some embodiments communicates the primary data 112 to be
copied (or a processed version thereof) to the designated
secondary storage computing device 106, via the communi-
cation pathway 114. The secondary storage computing device
106 in turn conveys the received data (or a processed version
thereof) to the secondary storage device 108. In some such
configurations, the communication pathway 114 between the
client computing device 102 and the secondary storage com-
puting device 106 comprises a portion of a LAN, WAN or
SAN. In other cases, at least some client computing devices
102 communicate directly with the secondary storage devices
108 (e.g., via Fibre Channel or SCSI connections). In some
other cases, one or more secondary copies 116 are created
from existing secondary copies, such as in the case of an
auxiliary copy operation, described in greater detail below.
Exemplary Primary Data and an Exemplary Secondary Copy

FIG. 1B is a detailed view showing some specific examples
of primary data stored on the primary storage device(s) 104
and secondary copy data stored on the secondary storage
device(s) 108, with other components in the system removed
for the purposes of illustration. Stored on the primary storage
device(s) 104 are primary data objects including word pro-
cessing documents 119A-B, spreadsheets 120, presentation
documents 122, video files 124, image files 126, email mail-
boxes 128 (and corresponding email messages 129A-C),
html/xml or other types of markup language files 130, data-
bases 132 and corresponding tables or other data structures
133A-1330).

Some or all primary data objects are associated with cor-
responding metadata (e.g., “Metal-11""), which may include
file system metadata and/or application specific metadata.
Stored on the secondary storage device(s) 108 are secondary
copy data objects 134A-C which may include copies of or
otherwise represent corresponding primary data objects and
metadata.

As shown, the secondary copy data objects 134A-C can
individually represent more than one primary data object. For
example, secondary copy data object 134A represents three
separate primary data objects 133C, 122, and 129C (repre-
sented as 133C', 122", and 129C', respectively, and accompa-
nied by the corresponding metadata Metall, Meta3, and
Meta8, respectively). Moreover, as indicated by the prime
mark ('), a secondary copy object may store a representation
of'a primary data object and/or metadata differently than the
original format, e.g., in a compressed, encrypted, dedupli-
cated, or other modified format. Likewise, secondary data
object 134B represents primary data objects 120, 133B, and
119A as 120', 133B', and 119A", respectively and accompa-
nied by corresponding metadata Meta2, Metal0, and Meta8,
respectively. Also, secondary data object 134C represents
primary data objects 133A, 1196, and 129A as 133A', 119B,
and 129A', respectively, accompanied by corresponding
metadata Meta9, Meta5, and Meta6, respectively.

10

15

20

25

30

35

40

45

50

55

60

65

16

Exemplary Information Management System Architecture

The information management system 100 can incorporate
a variety of different hardware and software components,
which can in turn be organized with respect to one another in
many different configurations, depending on the embodi-
ment. There are critical design choices involved in specifying
the functional responsibilities of the components and the role
of each component in the information management system
100. For instance, as will be discussed, such design choices
can impact performance as well as the adaptability of the
information management system 100 to data growth or other
changing circumstances.

FIG. 1C shows an information management system 100
designed according to these considerations and which
includes: storage manager 140, a centralized storage and/or
information manager that is configured to perform certain
control functions, one or more data agents 142 executing on
the client computing device(s) 102 configured to process
primary data 112, and one or more media agents 144 execut-
ing on the one or more secondary storage computing devices
106 for performing tasks involving the secondary storage
devices 108. While distributing functionality amongst mul-
tiple computing devices can have certain advantages, in other
contexts it can be beneficial to consolidate functionality on
the same computing device. As such, in various other embodi-
ments, one or more of the components shown in FIG. 1C as
being implemented on separate computing devices are imple-
mented on the same computing device. In one configuration,
a storage manager 140, one or more data agents 142, and one
or more media agents 144 are all implemented on the same
computing device. In another embodiment, one or more data
agents 142 and one or more media agents 144 are imple-
mented on the same computing device, while the storage
manager 140 is implemented on a separate computing device,
etc. without limitation.

Storage Manager

As noted, the number of components in the information
management system 100 and the amount of data under man-
agement can be quite large. Managing the components and
data is therefore a significant task, and a task that can grow in
an often unpredictable fashion as the quantity of components
and data scale to meet the needs of the organization. For these
and other reasons, according to certain embodiments, respon-
sibility for controlling the information management system
100, or at least a significant portion of that responsibility, is
allocated to the storage manager 140. By distributing control
functionality in this manner, the storage manager 140 can be
adapted independently according to changing circumstances.
Moreover, a computing device for hosting the storage man-
ager 140 can be selected to best suit the functions of the
storage manager 140. These and other advantages are
described in further detail below with respect to FIG. 1D.

The storage manager 140 may be a software module or
other application, which, in some embodiments operates in
conjunction with one or more associated data structures, e.g.,
a dedicated database (e.g., management database 146). In
some embodiments, storage manager 140 is a computing
device comprising circuitry for executing computer instruc-
tions and performs the functions described herein. The stor-
age manager generally initiates, performs, coordinates and/or
controls storage and other information management opera-
tions performed by the information management system 100,
e.g., to protect and control the primary data 112 and second-
ary copies 116 of data and metadata. In general, storage
manager 100 may be said to manage information manage-
ment system 100, which includes managing the constituent
components, e.g., data agents and media agents, etc.

US 9,405,928 B2

17

As shown by the dashed arrowed lines 114 in FIG. 1C, the
storage manager 140 may communicate with and/or control
some or all elements of the information management system
100, such as the data agents 142 and media agents 144. Thus,
in certain embodiments, control information originates from
the storage manager 140 and status reporting is transmitted to
storage manager 140 by the various managed components,
whereas payload data and payload metadata is generally com-
municated between the data agents 142 and the media agents
144 (or otherwise between the client computing device(s) 102
and the secondary storage computing device(s) 106), e.g., at
the direction of and under the management of the storage
manager 140. Control information can generally include
parameters and instructions for carrying out information
management operations, such as, without limitation, instruc-
tions to perform a task associated with an operation, timing
information specifying when to initiate a task associated with
an operation, data path information specifying what compo-
nents to communicate with or access in carrying out an opera-
tion, and the like. Payload data, on the other hand, can include
the actual data involved in the storage operation, such as
content data written to a secondary storage device 108 in a
secondary copy operation. Payload metadata can include any
of'the types of metadata described herein, and may be written
to a storage device along with the payload content data (e.g.,
in the form of a header).

In other embodiments, some information management
operations are controlled by other components in the infor-
mation management system 100 (e.g., the media agent(s) 144
or data agent(s) 142), instead of or in combination with the
storage manager 140.

According to certain embodiments, the storage manager
140 provides one or more of the following functions:

initiating execution of secondary copy operations;

managing secondary storage devices 108 and inventory/
capacity of the same;

reporting, searching, and/or classification of data in the

information management system 100;

allocating secondary storage devices 108 for secondary

storage operations;

monitoring completion of and providing status reporting

related to secondary storage operations;

tracking age information relating to secondary copies 116,

secondary storage devices 108, and comparing the age
information against retention guidelines;

tracking movement of data within the information manage-

ment system 100;
tracking logical associations between components in the
information management system 100;

protecting metadata associated with the information man-

agement system 100; and

implementing operations management functionality.

The storage manager 140 may maintain a database 146 (or
“storage manager database 146 or “management database
146) of management-related data and information manage-
ment policies 148. The database 146 may include a manage-
ment index 150 (or “index 150”) or other data structure that
stores logical associations between components of the sys-
tem, user preferences and/or profiles (e.g., preferences
regarding encryption, compression, or deduplication of pri-
mary or secondary copy data, preferences regarding the
scheduling, type, or other aspects of primary or secondary
copy or other operations, mappings of particular information
management users or user accounts to certain computing
devices or other components, etc.), management tasks, media
containerization, or other useful data. For example, the stor-
age manager 140 may use the index 150 to track logical

10

15

20

25

30

35

40

45

50

55

60

65

18

associations between media agents 144 and secondary stor-
age devices 108 and/or movement of data from primary stor-
age devices 104 to secondary storage devices 108. For
instance, the index 150 may store data associating a client
computing device 102 with a particular media agent 144
and/or secondary storage device 108, as specified in an infor-
mation management policy 148 (e.g., a storage policy, which
is defined in more detail below).

Administrators and other people may be able to configure
and initiate certain information management operations on an
individual basis. But while this may be acceptable for some
recovery operations or other relatively less frequent tasks, it is
often not workable for implementing on-going organization-
wide data protection and management. Thus, the information
management system 100 may utilize information manage-
ment policies 148 for specifying and executing information
management operations (e.g., on an automated basis). Gen-
erally, an information management policy 148 can include a
data structure or other information source that specifies a set
of'parameters (e.g., criteria and rules) associated with storage
or other information management operations.

The storage manager database 146 may maintain the infor-
mation management policies 148 and associated data,
although the information management policies 148 can be
stored in any appropriate location. For instance, an informa-
tion management policy 148 such as a storage policy may be
stored as metadata in a media agent database 152 or in a
secondary storage device 108 (e.g., as an archive copy) for use
in restore operations or other information management opera-
tions, depending on the embodiment. Information manage-
ment policies 148 are described further below.

According to certain embodiments, the storage manager
database 146 comprises a relational database (e.g., an SQL
database) for tracking metadata, such as metadata associated
with secondary copy operations (e.g., what client computing
devices 102 and corresponding data were protected). This and
other metadata may additionally be stored in other locations,
such as at the secondary storage computing devices 106 or on
the secondary storage devices 108, allowing data recovery
without the use of the storage manager 140 in some cases.

As shown, the storage manager 140 may include a jobs
agent 156, a user interface 158, and a management agent 154,
all of which may be implemented as interconnected software
modules or application programs.

The jobs agent 156 in some embodiments initiates, con-
trols, and/or monitors the status of some or all storage or other
information management operations previously performed,
currently being performed, or scheduled to be performed by
the information management system 100. For instance, the
jobs agent 156 may access information management policies
148 to determine when and how to initiate and control sec-
ondary copy and other information management operations,
as will be discussed further.

The user interface 158 may include information processing
and display software, such as a graphical user interface
(“GUI”), an application program interface (“API”), or other
interactive interface(s) through which users and system pro-
cesses can retrieve information about the status of informa-
tion management operations (e.g., storage operations) or
issue instructions to the information management system 100
and its constituent components. Via the user interface 158,
users may optionally issue instructions to the components in
the information management system 100 regarding perfor-
mance of storage and recovery operations. For example, a
user may modify a schedule concerning the number of pend-
ing secondary copy operations. As another example, a user
may employ the GUI to view the status of pending storage

US 9,405,928 B2

19

operations or to monitor the status of certain components in
the information management system 100 (e.g., the amount of
capacity left in a storage device).

An “information management cell” (or “storage operation
cell” or “cell”) may generally include a logical and/or physi-
cal grouping of a combination of hardware and software
components associated with performing information man-
agement operations on electronic data, typically one storage
manager 140 and at least one client computing device 102
(comprising data agent(s) 142) and at least one media agent
144. For instance, the components shown in FIG. 1C may
together form an information management cell. Multiple
cells may be organized hierarchically. With this configura-
tion, cells may inherit properties from hierarchically superior
cells or be controlled by other cells in the hierarchy (auto-
matically or otherwise). Alternatively, in some embodiments,
cells may inherit or otherwise be associated with information
management policies, preferences, information management
metrics, or other properties or characteristics according to
their relative position in a hierarchy of cells. Cells may also be
delineated and/or organized hierarchically according to func-
tion, geography, architectural considerations, or other factors
useful or desirable in performing information management
operations. A first cell may represent a geographic segment of
an enterprise, such as a Chicago office, and a second cell may
represent a different geographic segment, such as a New York
office. Other cells may represent departments within a par-
ticular office. Where delineated by function, a first cell may
perform one or more first types of information management
operations (e.g., one or more first types of secondary or other
copies), and a second cell may perform one or more second
types of information management operations (e.g., one or
more second types of secondary or other copies).

The storage manager 140 may also track information that
permits it to select, designate, or otherwise identify content
indices, deduplication databases, or similar databases or
resources or data sets within its information management cell
(or another cell) to be searched in response to certain queries.
Such queries may be entered by the user via interaction with
the user interface 158. In general, the management agent 154
allows multiple information management cells to communi-
cate with one another. For example, the information manage-
ment system 100 in some cases may be one information
management cell of a network of multiple cells adjacent to
one another or otherwise logically related in a WAN or LAN.
With this arrangement, the cells may be connected to one
another through respective management agents 154.

For instance, the management agent 154 can provide the
storage manager 140 with the ability to communicate with
other components within the information management sys-
tem 100 (and/or other cells within a larger information man-
agement system) via network protocols and application pro-
gramming interfaces (“APIs”) including, e.g., HTTP,
HTTPS, FTP, REST, virtualization software APIs, cloud ser-
vice provider APIs, and hosted service provider APIs. Inter-
cell communication and hierarchy is described in greater
detail in e.g., U.S. Pat. Nos. 7,747,579 and 7,343,453, which
are incorporated by reference herein.

Data Agents

As discussed, a variety of different types of applications
110 can operate on a given client computing device 102,
including operating systems, database applications, e-mail
applications, and virtual machines, just to name a few. And, as
part of the process of creating and restoring secondary copies
116, the client computing devices 102 may be tasked with
processing and preparing the primary data 112 from these
various different applications 110. Moreover, the nature of

20

40

45

20

the processing/preparation can differ across clients and appli-
cation types, e.g., due to inherent structural and formatting
differences among applications 110.

The one or more data agent(s) 142 are therefore advanta-
geously configured in some embodiments to assist in the
performance of information management operations based
on the type of data that is being protected, at a client-specific
and/or application-specific level.

The data agent 142 may be a software module or compo-
nent that is generally responsible for managing, initiating, or
otherwise assisting in the performance of information man-
agement operations in information management system 100,
generally as directed by storage manager 140. For instance,
the data agent 142 may take part in performing data storage
operations such as the copying, archiving, migrating, and/or
replicating of primary data 112 stored in the primary storage
device(s) 104. The data agent 142 may receive control infor-
mation from the storage manager 140, such as commands to
transfer copies of data objects, metadata, and other payload
data to the media agents 144.

In some embodiments, a data agent 142 may be distributed
between the client computing device 102 and storage man-
ager 140 (and any other intermediate components) or may be
deployed from a remote location or its functions approxi-
mated by a remote process that performs some or all of the
functions of data agent 142. In addition, a data agent 142 may
perform some functions provided by a media agent 144, or
may perform other functions such as encryption and dedupli-
cation.

As indicated, each data agent 142 may be specialized for a
particular application 110, and the system can employ mul-
tiple application-specific data agents 142, each of which may
perform information management operations (e.g., perform
backup, migration, and data recovery) associated with a dif-
ferent application 110. For instance, different individual data
agents 142 may be designed to handle Microsoft Exchange
data, Lotus Notes data, Microsoft Windows file system data,
Microsoft Active Directory Objects data, SQL Server data,
SharePoint data, Oracle database data, SAP database data,
virtual machines and/or associated data, and other types of
data.

A file system data agent, for example, may handle data files
and/or other file system information. If a client computing
device 102 has two or more types of data, a specialized data
agent 142 may be used for each data type to copy, archive,
migrate, and restore the client computing device 102 data. For
example, to backup, migrate, and/or restore all of the data on
aMicrosoft Exchange server, the client computing device 102
may use a Microsoft Exchange Mailbox data agent 142 to
back up the Exchange mailboxes, a Microsoft Exchange
Database data agent 142 to back up the Exchange databases,
aMicrosoft Exchange Public Folder data agent 142 to back up
the Exchange Public Folders, and a Microsoft Windows File
System data agent 142 to back up the file system of the client
computing device 102. In such embodiments, these special-
ized data agents 142 may be treated as four separate data
agents 142 even though they operate on the same client com-
puting device 102.

Other embodiments may employ one or more generic data
agents 142 that can handle and process data from two or more
different applications 110, or that can handle and process
multiple data types, instead of or in addition to using special-
ized data agents 142. For example, one generic data agent 142
may be used to back up, migrate and restore Microsoft
Exchange Mailbox data and Microsoft Exchange Database

US 9,405,928 B2

21

data while another generic data agent may handle Microsoft
Exchange Public Folder data and Microsoft Windows File
System data.

Each data agent 142 may be configured to access data
and/or metadata stored in the primary storage device(s) 104
associated with the data agent 142 and process the data as
appropriate. For example, during a secondary copy operation,
the data agent 142 may arrange or assemble the data and
metadata into one or more files having a certain format (e.g.,
a particular backup or archive format) before transferring the
file(s) to a media agent 144 or other component. The file(s)
may include a list of files or other metadata. Each data agent
142 can also assist in restoring data or metadata to primary
storage devices 104 from a secondary copy 116. For instance,
the data agent 142 may operate in conjunction with the stor-
age manager 140 and one or more of the media agents 144 to
restore data from secondary storage device(s) 108.

Media Agents

As indicated above with respect to FIG. 1A, off-loading
certain responsibilities from the client computing devices 102
to intermediate components such as the media agent(s) 144
can provide a number of benefits including improved client
computing device 102 operation, faster secondary copy
operation performance, and enhanced scalability. In one spe-
cific example which will be discussed below in further detail,
the media agent 144 can act as a local cache of copied data
and/or metadata that it has stored to the secondary storage
device(s) 108, providing improved restore capabilities.

Generally speaking, a media agent 144 may be imple-
mented as a software module that manages, coordinates, and
facilitates the transmission of data, as directed by the storage
manager 140, between a client computing device 102 and one
or more secondary storage devices 108. Whereas the storage
manager 140 controls the operation of the information man-
agement system 100, the media agent 144 generally provides
aportal to secondary storage devices 108. For instance, other
components in the system interact with the media agents 144
to gain access to data stored on the secondary storage devices
108, whether it be for the purposes of reading, writing, modi-
fying, or deleting data. Moreover, as will be described further,
media agents 144 can generate and store information relating
to characteristics of the stored data and/or metadata, or can
generate and store other types of information that generally
provides insight into the contents of the secondary storage
devices 108.

Media agents 144 can comprise separate nodes in the infor-
mation management system 100 (e.g., nodes that are separate
from the client computing devices 102, storage manager 140,
and/or secondary storage devices 108). In general, a node
within the information management system 100 can be a
logically and/or physically separate component, and in some
cases is a component that is individually addressable or oth-
erwise identifiable. In addition, each media agent 144 may
operate on a dedicated secondary storage computing device
106 in some cases, while in other embodiments a plurality of
media agents 144 operate on the same secondary storage
computing device 106.

A media agent 144 (and corresponding media agent data-
base 152) may be considered to be “associated with” a par-
ticular secondary storage device 108 if that media agent 144
is capable of one or more of: routing and/or storing data to the
particular secondary storage device 108, coordinating the
routing and/or storing of data to the particular secondary
storage device 108, retrieving data from the particular sec-
ondary storage device 108, coordinating the retrieval of data

10

15

20

25

30

35

40

45

50

55

60

65

22

from a particular secondary storage device 108, and modify-
ing and/or deleting data retrieved from the particular second-
ary storage device 108.

While media agent(s) 144 are generally associated with
one or more secondary storage devices 108, one or more
media agents 144 in certain embodiments are physically
separate from the secondary storage devices 108. For
instance, the media agents 144 may operate on secondary
storage computing devices 106 having different housings or
packages than the secondary storage devices 108. In one
example, a media agent 144 operates on a first server com-
puter and is in communication with a secondary storage
device(s) 108 operating in a separate, rack-mounted RAID-
based system.

Where the information management system 100 includes
multiple media agents 144 (see, e.g., FIG. 1D), a first media
agent 144 may provide failover functionality for a second,
failed media agent 144. In addition, media agents 144 can be
dynamically selected for storage operations to provide load
balancing. Failover and load balancing are described in
greater detail below.

Inoperation, a media agent 144 associated with a particular
secondary storage device 108 may instruct the secondary
storage device 108 to perform an information management
operation. For instance, a media agent 144 may instruct a tape
library to use a robotic arm or other retrieval means to load or
eject a certain storage media, and to subsequently archive,
migrate, or retrieve data to or from that media, e.g., for the
purpose of restoring the data to a client computing device 102.
As another example, a secondary storage device 108 may
include an array of hard disk drives or solid state drives
organized in a RAID configuration, and the media agent 144
may forward a logical unit number (LUN) and other appro-
priate information to the array, which uses the received infor-
mation to execute the desired storage operation. The media
agent 144 may communicate with a secondary storage device
108 via a suitable communications link, such as a SCSI or
Fiber Channel link.

As shown, each media agent 144 may maintain an associ-
ated media agent database 152. The media agent database 152
may be stored in a disk or other storage device (not shown)
that is local to the secondary storage computing device 106 on
which the media agent 144 operates. In other cases, the media
agent database 152 is stored remotely from the secondary
storage computing device 106.

The media agent database 152 can include, among other
things, an index 153 (see, e.g., FIG. 1C), which comprises
information generated during secondary copy operations and
other storage or information management operations. The
index 153 provides a media agent 144 or other component
with a fast and efficient mechanism for locating secondary
copies 116 or other data stored in the secondary storage
devices 108. In some cases, the index 153 does not form a part
of'and is instead separate from the media agent database 152.

A media agent index 153 or other data structure associated
with the particular media agent 144 may include information
about the stored data. For instance, for each secondary copy
116, the index 153 may include metadata such as a list of the
data objects (e.g., files/subdirectories, database objects, mail-
box objects, etc.), a path to the secondary copy 116 on the
corresponding secondary storage device 108, location infor-
mation indicating where the data objects are stored in the
secondary storage device 108, when the data objects were
created or modified, etc. Thus, the index 153 includes meta-
data associated with the secondary copies 116 that is readily
available for use without having to be first retrieved from the
secondary storage device 108. In yet further embodiments,

US 9,405,928 B2

23

some or all of the information in index 153 may instead or
additionally be stored along with the secondary copies of data
in a secondary storage device 108. In some embodiments, the
secondary storage devices 108 can include sufficient infor-
mation to perform a “bare metal restore”, where the operating
system of a failed client computing device 102 or other
restore target is automatically rebuilt as part of a restore
operation.

Because the index 153 maintained in the media agent data-
base 152 may operate as a cache, it can also be referred to as
“an index cache.” In such cases, information stored in the
index cache 153 typically comprises data that reflects certain
particulars about storage operations that have occurred rela-
tively recently. After some triggering event, such as after a
certain period of time elapses, or the index cache 153 reaches
a particular size, the index cache 153 may be copied or
migrated to a secondary storage device(s) 108. This informa-
tion may need to be retrieved and uploaded back into the
index cache 153 or otherwise restored to a media agent 144 to
facilitate retrieval of data from the secondary storage
device(s) 108. In some embodiments, the cached information
may include format or containerization information related to
archives or other files stored on the storage device(s) 108. In
this manner, the index cache 153 allows for accelerated
restores.

In some alternative embodiments the media agent 144 gen-
erally acts as a coordinator or facilitator of storage operations
between client computing devices 102 and corresponding
secondary storage devices 108, but does not actually write the
data to the secondary storage device 108. For instance, the
storage manager 140 (or the media agent 144) may instruct a
client computing device 102 and secondary storage device
108 to communicate with one another directly. In such a case
the client computing device 102 transmits the data directly or
via one or more intermediary components to the secondary
storage device 108 according to the received instructions, and
vice versa. In some such cases, the media agent 144 may still
receive, process, and/or maintain metadata related to the stor-
age operations. Moreover, in these embodiments, the payload
data can flow through the media agent 144 for the purposes of
populating the index cache 153 maintained in the media agent
database 152, but not for writing to the secondary storage
device 108.

The media agent 144 and/or other components such as the
storage manager 140 may in some cases incorporate addi-
tional functionality, such as data classification, content index-
ing, deduplication, encryption, compression, and the like.
Further details regarding these and other functions are
described below.

Distributed, Scalable Architecture

As described, certain functions of the information manage-
ment system 100 can be distributed amongst various physical
and/or logical components in the system. For instance, one or
more of the storage manager 140, data agents 142, and media
agents 144 may operate on computing devices that are physi-
cally separate from one another. This architecture can provide
a number of benefits.

For instance, hardware and software design choices for
each distributed component can be targeted to suit its particu-
lar function. The secondary computing devices 106 on which
the media agents 144 operate can be tailored for interaction
with associated secondary storage devices 108 and provide
fast index cache operation, among other specific tasks. Simi-
larly, the client computing device(s) 102 can be selected to
effectively service the applications 110 thereon, in order to
efficiently produce and store primary data 112.

10

15

20

25

30

35

40

45

50

55

60

65

24

Moreover, in some cases, one or more of the individual
components in the information management system 100 can
be distributed to multiple, separate computing devices. As
one example, for large file systems where the amount of data
stored in the management database 146 is relatively large, the
database 146 may be migrated to or otherwise reside on a
specialized database server (e.g., an SQL server) separate
from a server that implements the other functions of the
storage manager 140. This distributed configuration can pro-
vide added protection because the database 146 can be pro-
tected with standard database utilities (e.g., SQL log shipping
or database replication) independent from other functions of
the storage manager 140. The database 146 can be efficiently
replicated to a remote site for use in the event of a disaster or
other data loss at the primary site. Or the database 146 can be
replicated to another computing device within the same site,
such as to a higher performance machine in the event that a
storage manager host device can no longer service the needs
of'a growing information management system 100.

The distributed architecture also provides both scalability
and efficient component utilization. FIG. 1D shows an
embodiment of the information management system 100
including a plurality of client computing devices 102 and
associated data agents 142 as well as a plurality of secondary
storage computing devices 106 and associated media agents
144.

Additional components can be added or subtracted based
on the evolving needs of the information management system
100. For instance, depending on where bottlenecks are iden-
tified, administrators can add additional client computing
devices 102, secondary storage computing devices 106 (and
corresponding media agents 144), and/or secondary storage
devices 108. Moreover, where multiple fungible components
are available, load balancing can be implemented to dynami-
cally address identified bottlenecks. As an example, the stor-
age manager 140 may dynamically select which media agents
144 and/or secondary storage devices 108 to use for storage
operations based on a processing load analysis of the media
agents 144 and/or secondary storage devices 108, respec-
tively.

Moreover, each client computing device 102 in some
embodiments can communicate with, among other compo-
nents, any of the media agents 144, e.g., as directed by the
storage manager 140. And each media agent 144 may be able
to communicate with, among other components, any of the
secondary storage devices 108, e.g., as directed by the storage
manager 140. Thus, operations can be routed to the secondary
storage devices 108 in a dynamic and highly flexible manner,
to provide load balancing, failover, and the like. Further
examples of scalable systems capable of dynamic storage
operations, and of systems capable of performing load bal-
ancing and fail over are provided in U.S. Pat. No. 7,246,207,
which is incorporated by reference herein.

In alternative configurations, certain components are not
distributed and may instead reside and execute on the same
computing device. For example, in some embodiments, one
or more data agents 142 and the storage manager 140 operate
on the same client computing device 102. In another embodi-
ment, one or more data agents 142 and one or more media
agents 144 operate on a single computing device.
Exemplary Types of Information Management Operations

Inorderto protect and leverage stored data, the information
management system 100 can be configured to perform a
variety of information management operations. As will be
described, these operations can generally include secondary
copy and other data movement operations, processing and
data manipulation operations, analysis, reporting, and man-

US 9,405,928 B2

25

agement operations. The operations described herein may be
performed on any type of computing device, e.g., between
two computers connected via a LAN, to a mobile client tele-
communications device connected to a server viaa WLAN, to
any manner of client computing device coupled to a cloud
storage target, etc., without limitation.

Data Movement Operations

Data movement operations according to certain embodi-
ments are generally operations that involve the copying or
migration of data (e.g., payload data) between different loca-
tions in the information management system 100 in an origi-
nal/native and/or one or more different formats. For example,
data movement operations can include operations in which
stored data is copied, migrated, or otherwise transferred from
one or more first storage devices to one or more second
storage devices, such as from primary storage device(s) 104
to secondary storage device(s) 108, from secondary storage
device(s) 108 to different secondary storage device(s) 108,
from secondary storage devices 108 to primary storage
devices 104, or from primary storage device(s) 104 to difter-
ent primary storage device(s) 104.

Data movement operations can include by way of example,
backup operations, archive operations, information lifecycle
management operations such as hierarchical storage manage-
ment operations, replication operations (e.g., continuous data
replication operations), snapshot operations, deduplication or
single-instancing operations, auxiliary copy operations, and
the like. As will be discussed, some of these operations
involve the copying, migration or other movement of data,
without actually creating multiple, distinct copies. Nonethe-
less, some or all of these operations are referred to as “copy”
operations for simplicity.

Backup Operations

Abackup operation creates a copy of a version of data (e.g.,
one or more files or other data units) in primary data 112 at a
particular point in time. Each subsequent backup copy may be
maintained independently of the first. Further, a backup copy
in some embodiments is generally stored in a form that is
different than the native format, e.g., a backup format. This
can be in contrast to the version in primary data 112 from
which the backup copy is derived, and which may instead be
stored in a native format of the source application(s) 110. In
various cases, backup copies can be stored in a format in
which the data is compressed, encrypted, deduplicated, and/
or otherwise modified from the original application format.
For example, a backup copy may be stored in a backup format
that facilitates compression and/or efficient long-term stor-
age.

Backup copies can have relatively long retention periods as
compared to primary data 112, and may be stored on media
with slower retrieval times than primary data 112 and certain
other types of secondary copies 116. On the other hand,
backups may have relatively shorter retention periods than
some other types of secondary copies 116, such as archive
copies (described below). Backups may sometimes be stored
at an offsite location.

Backup operations can include full backups, differential
backups, incremental backups, “synthetic full” backups, and/
or creating a “reference copy.” A full backup (or “standard full
backup”) in some embodiments is generally a complete
image of the data to be protected. However, because full
backup copies can consume a relatively large amount of stor-
age, it can be useful to use a full backup copy as a baseline and
only store changes relative to the full backup copy for subse-
quent backup copies.

For instance, a differential backup operation (or cumula-
tive incremental backup operation) tracks and stores changes

10

15

20

25

30

35

40

45

50

55

60

65

26

that have occurred since the last full backup. Differential
backups can grow quickly in size, but can provide relatively
efficient restore times because a restore can be completed in
some cases using only the full backup copy and the latest
differential copy.

An incremental backup operation generally tracks and
stores changes since the most recent backup copy of any type,
which can greatly reduce storage utilization. In some cases,
however, restore times can be relatively long in comparison to
full or differential backups because completing a restore
operation may involve accessing a full backup in addition to
multiple incremental backups.

Synthetic full backups generally consolidate data without
directly backing up data from the client computing device. A
synthetic full backup is created from the most recent full
backup (i.e., standard or synthetic) and subsequent incremen-
tal and/or differential backups. The resulting synthetic full
backup is identical to what would have been created had the
last backup for the subclient been a standard full backup.
Unlike standard full, incremental, and differential backups, a
synthetic full backup does not actually transter data from a
client computer to the backup media, because it operates as a
backup consolidator. A synthetic full backup extracts the
index data of each participating subclient. Using this index
data and the previously backed up user data images, it builds
new full backup images, one for each subclient. The new
backup images consolidate the index and user data stored in
the related incremental, differential, and previous full back-
ups, in some embodiments creating an archive file at the
subclient level.

Any of the above types of backup operations can be at the
volume-level, file-level, or block-level. Volume level backup
operations generally involve the copying of a data volume
(e.g., a logical disk or partition) as a whole. In a file-level
backup, the information management system 100 may gen-
erally track changes to individual files, and includes copies of
files in the backup copy. In the case of a block-level backup,
files are broken into constituent blocks, and changes are
tracked at the block-level. Uponrestore, the information man-
agement system 100 reassembles the blocks into files in a
transparent fashion.

Far less data may actually be transferred and copied to the
secondary storage devices 108 during a file-level copy than a
volume-level copy. Likewise, a block-level copy may involve
the transfer of less data than a file-level copy, resulting in
faster execution times. However, restoring arelatively higher-
granularity copy can result in longer restore times. For
instance, when restoring a block-level copy, the process of
locating constituent blocks can sometimes result in longer
restore times as compared to file-level backups. Similar to
backup operations, the other types of secondary copy opera-
tions described herein can also be implemented at either the
volume-level, file-level, or block-level.

For example, in some embodiments, a reference copy may
comprise copy(ies) of selected objects from backed up data,
typically to help organize data by keeping contextual infor-
mation from multiple sources together, and/or help retain
specific data for a longer period of time, such as for legal hold
needs. A reference copy generally maintains data integrity,
and when the data is restored, it may be viewed in the same
format as the source data. In some embodiments, a reference
copy is based on a specialized client, individual subclient and
associated information management policies (e.g., storage
policy, retention policy, etc.) that are administered within
information management system 100.

US 9,405,928 B2

27

Archive Operations

Because backup operations generally involve maintaining
a version of the copied data in primary data 112 and also
maintaining backup copies in secondary storage device(s)
108, they can consume significant storage capacity. To help
reduce storage consumption, an archive operation according
to certain embodiments creates a secondary copy 116 by both
copying and removing source data. Or, seen another way,
archive operations can involve moving some or all of the
source data to the archive destination. Thus, data satisfying
criteria for removal (e.g., data of a threshold age or size) may
be removed from source storage. The source data may be
primary data 112 or a secondary copy 116, depending on the
situation. As with backup copies, archive copies can be stored
in a format in which the data is compressed, encrypted, dedu-
plicated, and/or otherwise modified from the format of the
original application or source copy. In addition, archive cop-
ies may be retained for relatively long periods of time (e.g.,
years) and, in some cases, are never deleted. Archive copies
are generally retained for longer periods of time than backup
copies, for example. In certain embodiments, archive copies
may be made and kept for extended periods in order to meet
compliance regulations.

Moreover, when primary data 112 is archived, in some
cases the corresponding primary data 112 or a portion thereof
is deleted when creating the archive copy. Thus, archiving can
serve the purpose of freeing up space in the primary storage
device(s) 104 and easing the demand on computational
resources on client computing device 102. Similarly, when a
secondary copy 116 is archived, the secondary copy 116 may
be deleted, and an archive copy can therefore serve the pur-
pose of freeing up space in secondary storage device(s) 108.
In contrast, source copies often remain intact when creating
backup copies. Examples of compatible data archiving opera-
tions are provided in U.S. Pat. No. 7,107,298, which is incor-
porated by reference herein.

Snapshot Operations

Snapshot operations can provide a relatively lightweight,
efficient mechanism for protecting data. From an end-user
viewpoint, a snapshot may be thought of as an “instant” image
of the primary data 112 at a given point in time, and may
include state and/or status information relative to an applica-
tion that creates/manages the primary data 112. In one
embodiment, a snapshot may generally capture the directory
structure of an object in primary data 112 such as a file or
volume or other data set at a particular moment in time and
may also preserve file attributes and contents. A snapshot in
some cases is created relatively quickly, e.g., substantially
instantly, using a minimum amount of file space, but may still
function as a conventional file system backup.

A “hardware snapshot” (or “hardware-based snapshot™)
operation can be a snapshot operation where a target storage
device (e.g., a primary storage device 104 or a secondary
storage device 108) performs the snapshot operation in a
self-contained fashion, substantially independently, using
hardware, firmware and/or software operating on the storage
device itself. For instance, the storage device may be capable
of performing snapshot operations upon request, generally
without intervention or oversight from any of the other com-
ponents in the information management system 100. In this
manner, hardware snapshots can off-load other components
of information management system 100 from processing
involved in snapshot creation and management.

A “software snapshot” (or “software-based snapshot™)
operation, on the other hand, can be a snapshot operation in
which one or more other components in information manage-
ment system 100 (e.g., client computing devices 102, data

10

15

20

25

30

35

40

45

50

55

60

65

28

agents 142, etc.) implement a software layer that manages the
snapshot operation via interaction with the target storage
device. For instance, the component executing the snapshot
management software layer may derive a set of pointers and/
or data that represents the snapshot. The snapshot manage-
ment software layer may then transmit the same to the target
storage device, along with appropriate instructions for writ-
ing the snapshot.

Some types of snapshots do not actually create another
physical copy of all the data as it existed at the particular point
in time, but may simply create pointers that are able to map
files and directories to specific memory locations (e.g., to
specific disk blocks) where the data resides, as it existed at the
particular point in time. For example, a snapshot copy may
include a set of pointers derived from the file system or from
an application. In some other cases, the snapshot may be
created at the block-level, such that creation of the snapshot
occurs without awareness of the file system. Each pointer
points to a respective stored data block, so that collectively,
the set of pointers reflect the storage location and state of the
data object (e.g., file(s) or volume(s) or data set(s)) at a par-
ticular point in time when the snapshot copy was created.

An initial snapshot may use only a small amount of disk
space needed to record a mapping or other data structure
representing or otherwise tracking the blocks that correspond
to the current state of the file system. Additional disk space is
usually required only when files and directories are modified
later on. Furthermore, when files are modified, typically only
the pointers which map to blocks are copied, not the blocks
themselves. In some embodiments, for example in the case of
“copy-on-write” snapshots, when a block changes in primary
storage, the block is copied to secondary storage or cached in
primary storage before the block is overwritten in primary
storage, and the pointer to that block is changed to reflect the
new location of that block. The snapshot mapping of file
system data may also be updated to reflect the changed
block(s) at that particular point in time. In some other cases,
a snapshot includes a full physical copy of all or substantially
all of the data represented by the snapshot. Further examples
of snapshot operations are provided in U.S. Pat. No. 7,529,
782, which is incorporated by reference herein.

A snapshot copy in many cases can be made quickly and
without significantly impacting primary computing resources
because large amounts of data need not be copied or moved.
In some embodiments, a snapshot may exist as a virtual file
system, parallel to the actual file system. Users in some cases
gain read-only access to the record of files and directories of
the snapshot. By electing to restore primary data 112 from a
snapshot taken at a given point in time, users may also return
the current file system to the state of the file system that
existed when the snapshot was taken.

Replication Operations

Another type of secondary copy operation is a replication
operation. Some types of secondary copies 116 are used to
periodically capture images of primary data 112 at particular
points in time (e.g., backups, archives, and snapshots). How-
ever, it can also be useful for recovery purposes to protect
primary data 112 in a more continuous fashion, by replicating
the primary data 112 substantially as changes occur. In some
cases a replication copy can be a mirror copy, for instance,
where changes made to primary data 112 are mirrored or
substantially immediately copied to another location (e.g., to
secondary storage device(s) 108). By copying each write
operation to the replication copy, two storage systems are kept
synchronized or substantially synchronized so that they are
virtually identical at approximately the same time. Where
entire disk volumes are mirrored, however, mirroring can

US 9,405,928 B2

29

require significant amount of storage space and utilizes a
large amount of processing resources.

According to some embodiments storage operations are
performed on replicated data that represents a recoverable
state, or “known good state” of a particular application run-
ning on the source system. For instance, in certain embodi-
ments, known good replication copies may be viewed as
copies of primary data 112. This feature allows the system to
directly access, copy, restore, backup or otherwise manipu-
late the replication copies as if the data were the “live” pri-
mary data 112. This can reduce access time, storage utiliza-
tion, and impact on source applications 110, among other
benefits. Based on known good state information, the infor-
mation management system 100 can replicate sections of
application data that represent a recoverable state rather than
rote copying of blocks of data. Examples of compatible rep-
lication operations (e.g., continuous data replication) are pro-
vided in U.S. Pat. No. 7,617,262, which is incorporated by
reference herein.

Deduplication/Single-Instancing Operations

Another type of data movement operation is deduplication
or single-instance storage, which is useful to reduce the
amount of non-primary data. For instance, some or all of the
above-described secondary storage operations can involve
deduplication in some fashion. New data is read, broken down
into portions (e.g., sub-file level blocks, files, etc.) of a
selected granularity, compared with blocks that are already in
secondary storage, and only the new blocks are stored. Blocks
that already exist are represented as pointers to the already
stored data.

In order to streamline the comparison process, the infor-
mation management system 100 may calculate and/or store
signatures (e.g., hashes or cryptographically unique IDs) cor-
responding to the individual data blocks in a database and
compare the signatures instead of comparing entire data
blocks. In some cases, only a single instance of each element
is stored, and deduplication operations may therefore be
referred to interchangeably as “single-instancing” opera-
tions. Depending on the implementation, however, dedupli-
cation or single-instancing operations can store more than
one instance of certain data blocks, but nonetheless signifi-
cantly reduce data redundancy. Depending on the embodi-
ment, deduplication blocks can be of fixed or variable length.
Using variable length blocks can provide enhanced dedupli-
cation by responding to changes in the data stream, but can
involve complex processing. In some cases, the information
management system 100 utilizes a technique for dynamically
aligning deduplication blocks (e.g., fixed-length blocks)
based on changing content in the data stream, as described in
U.S. Pat. No. 8,364,652, which is incorporated by reference
herein.

The information management system 100 can perform
deduplication in a variety of manners at a variety of locations
in the information management system 100. For instance, in
some embodiments, the information management system 100
implements “target-side” deduplication by deduplicating
data (e.g., secondary copies 116) stored in the secondary
storage devices 108. In some such cases, the media agents 144
are generally configured to manage the deduplication pro-
cess. For instance, one or more of the media agents 144
maintain a corresponding deduplication database that stores
deduplication information (e.g., datablock signatures).
Examples of such a configuration are provided in U.S. Pat.
Pub. No. 2012/0150826, which is incorporated by reference
herein. Instead of or in combination with “target-side” dedu-
plication, deduplication can also be performed on the
“source-side” (or “client-side”), e.g., to reduce the amount of

20

30

40

45

50

55

30

traffic between the media agents 144 and the client computing
device(s) 102 and/or reduce redundant data stored in the
primary storage devices 104. According to various imple-
mentations, one or more of the storage devices of the target-
side and/or source-side of an operation can be cloud-based
storage devices. Thus, the target-side and/or source-side
deduplication can be cloud-based deduplication. In particu-
lar, as discussed previously, the storage manager 140 may
communicate with other components within the information
management system 100 via network protocols and cloud
service provider APIs to facilitate cloud-based deduplication/
single instancing. Examples of such deduplication techniques
are provided in U.S. Pat. Pub. No. 2012/0150818, which is
incorporated by reference herein. Some other compatible
deduplication/single instancing techniques are described in
U.S. Pat. Pub. Nos. 2006/0224846 and 2009/0319534, which
are incorporated by reference herein.

Information Lifecycle Management and Hierarchical Stor-
age Management Operations

In some embodiments, files and other data over their life-
time move from more expensive, quick access storage to less
expensive, slower access storage. Operations associated with
moving data through various tiers of storage are sometimes
referred to as information lifecycle management (ILM)
operations.

One type of ILM operation is a hierarchical storage man-
agement (HSM) operation. A HSM operation is generally an
operation for automatically moving data between classes of
storage devices, such as between high-cost and low-cost stor-
age devices. For instance, an HSM operation may involve
movement of data from primary storage devices 104 to sec-
ondary storage devices 108, or between tiers of secondary
storage devices 108. With each tier, the storage devices may
be progressively relatively cheaper, have relatively slower
access/restore times, etc. For example, movement of data
between tiers may occur as data becomes less important over
time.

In some embodiments, an HSM operation is similar to an
archive operation in that creating an HSM copy may (though
not always) involve deleting some of the source data, e.g.,
according to one or more criteria related to the source data.
For example, an HSM copy may include data from primary
data 112 or a secondary copy 116 that is larger than a given
size threshold or older than a given age threshold and that is
stored in a backup format.

Often, and unlike some types of archive copies, HSM data
that is removed or aged from the source is replaced by a
logical reference pointer or stub. The reference pointer or stub
can be stored in the primary storage device 104 (or other
source storage device, such as a secondary storage device
108) to replace the deleted source data and to point to or
otherwise indicate the new location in a secondary storage
device 108.

According to one example, files are generally moved
between higher and lower cost storage depending on how
often the files are accessed. When a user requests access to the
HSM data that has been removed or migrated, the information
management system 100 uses the stub to locate the data and
may make recovery of the data appear transparent, even
though the HSM data may be stored at a location different
from other source data. In this manner, the data appears to the
user (e.g., in file system browsing windows and the like) as if
it still resides in the source location (e.g., in a primary storage
device 104). The stub may also include some metadata asso-
ciated with the corresponding data, so that a file system and/or

US 9,405,928 B2

31

application can provide some information about the data
object and/or a limited-functionality version (e.g., a preview)
of the data object.

An HSM copy may be stored in a format other than the
native application format (e.g., where the data is compressed,
encrypted, deduplicated, and/or otherwise modified from the
original native application format). In some cases, copies
which involve the removal of data from source storage and the
maintenance of stub or other logical reference information on
source storage may be referred to generally as “on-line
archive copies”. On the other hand, copies which involve the
removal of data from source storage without the maintenance
of stub or other logical reference information on source stor-
age may be referred to as “off-line archive copies”. Examples
of HSM and ILM techniques are provided in U.S. Pat. No.
7,343,453, which is incorporated by reference herein.

Auxiliary Copy and Disaster Recovery Operations

An auxiliary copy is generally a copy operation in which a
copy is created of an existing secondary copy 116. For
instance, an initial secondary copy 116 may be generated
using or otherwise be derived from primary data 112 (or other
data residing in the secondary storage subsystem 118),
whereas an auxiliary copy is generated from the initial sec-
ondary copy 116. Auxiliary copies can be used to create
additional standby copies of data and may reside on different
secondary storage devices 108 than the initial secondary cop-
ies 116. Thus, auxiliary copies can be used for recovery
purposes if initial secondary copies 116 become unavailable.
Exemplary compatible auxiliary copy techniques are
described in further detail in U.S. Pat. No. 8,230,195, which
is incorporated by reference herein.

The information management system 100 may also per-
form disaster recovery operations that make or retain disaster
recovery copies, often as secondary, high-availability disk
copies. The information management system 100 may create
secondary disk copies and store the copies at disaster recov-
ery locations using auxiliary copy or replication operations,
such as continuous data replication technologies. Depending
on the particular data protection goals, disaster recovery loca-
tions can be remote from the client computing devices 102
and primary storage devices 104, remote from some or all of
the secondary storage devices 108, or both.

Data Analysis, Reporting, and Management Operations

Data analysis, reporting, and management operations can
be different than data movement operations in that they do not
necessarily involve the copying, migration or other transfer of
data (e.g., primary data 112 or secondary copies 116) between
different locations in the system. For instance, data analysis
operations may involve processing (e.g., offline processing)
or modification of already stored primary data 112 and/or
secondary copies 116. However, in some embodiments data
analysis operations are performed in conjunction with data
movement operations. Some data analysis operations include
content indexing operations and classification operations
which can be useful in leveraging the data under management
to provide enhanced search and other features. Other data
analysis operations such as compression and encryption can
provide data reduction and security benefits, respectively.

Classification Operations/Content Indexing

In some embodiments, the information management sys-
tem 100 analyzes and indexes characteristics, content, and
metadata associated with the primary data 112 and/or second-
ary copies 116. The content indexing can be used to identify
files or other data objects having pre-defined content (e.g.,
user-defined keywords or phrases, other keywords/phrases

30

40

45

55

32

that are not defined by a user, etc.), and/or metadata (e.g.,
email metadata such as “to”, “from”, “cc”, “bcc”, attachment
name, received time, etc.).

The information management system 100 generally orga-
nizes and catalogues the results in a content index, which may
be stored within the media agent database 152, for example.
The content index can also include the storage locations of (or
pointer references to) the indexed data in the primary data 112
or secondary copies 116, as appropriate. The results may also
be stored, in the form of a content index database or other-
wise, elsewhere in the information management system 100
(e.g., in the primary storage devices 104, or in the secondary
storage device 108). Such index data provides the storage
manager 140 or another component with an efficient mecha-
nism for locating primary data 112 and/or secondary copies
116 of data objects that match particular criteria.

For instance, search criteria can be specified by a user
through user interface 158 of the storage manager 140. In
some cases, the information management system 100 ana-
lyzes data and/or metadata in secondary copies 116 to create
an “off-line” content index, without significantly impacting
the performance of the client computing devices 102.
Depending on the embodiment, the system can also imple-
ment “on-line” content indexing, e.g., of primary data 112.
Examples of compatible content indexing techniques are pro-
vided in U.S. Pat. No. 8,170,995, which is incorporated by
reference herein.

One or more components can be configured to scan data
and/or associated metadata for classification purposes to
populate a database (or other data structure) of information,
which can be referred to as a “data classification database” or
a “metabase”. Depending on the embodiment, the data clas-
sification database(s) can be organized in a variety of different
ways, including centralization, logical sub-divisions, and/or
physical sub-divisions. For instance, one or more centralized
data classification databases may be associated with different
subsystems or tiers within the information management sys-
tem 100. As an example, there may be a first centralized
metabase associated with the primary storage subsystem 117
and a second centralized metabase associated with the sec-
ondary storage subsystem 118. In other cases, there may be
one or more metabases associated with individual compo-
nents, e.g., client computing devices 102 and/or media agents
144. In some embodiments, a data classification database
(metabase) may reside as one or more data structures within
management database 146, or may be otherwise associated
with storage manager 140.

In some cases, the metabase(s) may be included in separate
database(s) and/or on separate storage device(s) from pri-
mary data 112 and/or secondary copies 116, such that opera-
tions related to the metabase do not significantly impact per-
formance on other components in the information
management system 100. In other cases, the metabase(s) may
be stored along with primary data 112 and/or secondary cop-
ies 116. Files or other data objects can be associated with
identifiers (e.g., tag entries, etc.) in the media agent 144 (or
other indices) to facilitate searches of stored data objects.
Among a number of other benefits, the metabase can also
allow efficient, automatic identification of files or other data
objects to associate with secondary copy or other information
management operations (e.g., in lieu of scanning an entire file
system). Examples of compatible metabases and data classi-
fication operations are provided in U.S. Pat. Nos. 8,229,954
and 7,747,579, which are incorporated by reference herein.

Encryption Operations

The information management system 100 in some cases is
configured to process data (e.g., files or other data objects,

US 9,405,928 B2

33

secondary copies 116, etc.), according to an appropriate
encryption algorithm (e.g., Blowfish, Advanced Encryption
Standard [AES], Triple Data Encryption Standard [3-DES],
etc.) to limit access and provide data security in the informa-
tion management system 100. The information management
system 100 in some cases encrypts the data at the client level,
such that the client computing devices 102 (e.g., the data
agents 142) encrypt the data prior to forwarding the data to
other components, e.g., before sending the data to media
agents 144 during a secondary copy operation. In such cases,
the client computing device 102 may maintain or have access
to an encryption key or passphrase for decrypting the data
upon restore. Encryption can also occur when creating copies
of secondary copies, e.g., when creating auxiliary copies or
archive copies. In yet further embodiments, the secondary
storage devices 108 can implement built-in, high perfor-
mance hardware encryption.

Management and Reporting Operations

Certain embodiments leverage the integrated, ubiquitous
nature of the information management system 100 to provide
useful system-wide management and reporting functions.
Examples of some compatible management and reporting
techniques are provided in U.S. Pat. No. 7,343,453, which is
incorporated by reference herein.

Operations management can generally include monitoring
and managing the health and performance of information
management system 100 by, without limitation, performing
error tracking, generating granular storage/performance met-
rics (e.g., job success/failure information, deduplication effi-
ciency, etc.), generating storage modeling and costing infor-
mation, and the like. As an example, a storage manager 140 or
other component in the information management system 100
may analyze traffic patterns and suggest and/or automatically
route data via a particular route to minimize congestion. In
some embodiments, the system can generate predictions
relating to storage operations or storage operation informa-
tion. Such predictions, which may be based on a trending
analysis, may predict various network operations or resource
usage, such as network traffic levels, storage media use, use of
bandwidth of communication links, use of media agent com-
ponents, etc. Further examples of traffic analysis, trend analy-
sis, prediction generation, and the like are described in U.S.
Pat. No. 7,343,453, which is incorporated by reference
herein.

In some configurations, a master storage manager 140 may
track the status of storage operation cells in a hierarchy, such
as the status of jobs, system components, system resources,
and other items, by communicating with storage managers
140 (or other components) in the respective storage operation
cells. Moreover, the master storage manager 140 may track
the status of its associated storage operation cells and infor-
mation management operations by receiving periodic status
updates from the storage managers 140 (or other compo-
nents) in the respective cells regarding jobs, system compo-
nents, system resources, and other items. In some embodi-
ments, a master storage manager 140 may store status
information and other information regarding its associated
storage operation cells and other system information in its
index 150 (or other location).

The master storage manager 140 or other component may
also determine whether certain storage-related criteria or
other criteria are satisfied, and perform an action or trigger
event (e.g., data migration) in response to the criteria being
satisfied, such as where a storage threshold is met for a par-
ticular volume, or where inadequate protection exists for
certain data. For instance, in some embodiments, data from
one or more storage operation cells is used to dynamically and

10

15

20

25

30

35

40

45

50

55

60

65

34

automatically mitigate recognized risks, and/or to advise
users of risks or suggest actions to mitigate these risks. For
example, an information management policy may specify
certain requirements (e.g., that a storage device should main-
tain a certain amount of free space, that secondary copies
should occur at a particular interval, that data should be aged
and migrated to other storage after a particular period, that
data onasecondary volume should always have a certain level
of availability and be restorable within a given time period,
that data on a secondary volume may be mirrored or other-
wise migrated to a specified number of other volumes, etc.). If
arisk condition or other criterion is triggered, the system may
notify the user of these conditions and may suggest (or auto-
matically implement) an action to mitigate or otherwise
address the risk. For example, the system may indicate that
data from a primary copy 112 should be migrated to a sec-
ondary storage device 108 to free space on the primary stor-
age device 104. Examples of the use of risk factors and other
triggering criteria are described in U.S. Pat. No. 7,343,453,
which is incorporated by reference herein.

In some embodiments, the system 100 may also determine
whether a metric or other indication satisfies particular stor-
age criteria and, if so, perform an action. For example, as
previously described, a storage policy or other definition
might indicate that a storage manager 140 should initiate a
particular action if a storage metric or other indication drops
below or otherwise fails to satisfy specified criteria such as a
threshold of data protection. Examples of such metrics are
described in U.S. Pat. No. 7,343,453, which is incorporated
by reference herein.

In some embodiments, risk factors may be quantified into
certain measurable service or risk levels for ease of compre-
hension. For example, certain applications and associated
data may be considered to be more important by an enterprise
than other data and services. Financial compliance data, for
example, may be of greater importance than marketing mate-
rials, etc. Network administrators may assign priority values
or “weights” to certain data and/or applications, correspond-
ing to the relative importance. The level of compliance of
storage operations specified for these applications may also
be assigned a certain value. Thus, the health, impact, and
overall importance of a service may be determined, such as by
measuring the compliance value and calculating the product
of the priority value and the compliance value to determine
the “service level” and comparing it to certain operational
thresholds to determine whether it is acceptable. Further
examples of the service level determination are provided in
U.S. Pat. No. 7,343,453, which is incorporated by reference
herein.

The system 100 may additionally calculate data costing
and data availability associated with information manage-
ment operation cells according to an embodiment of the
invention. For instance, data received from the cell may be
used in conjunction with hardware-related information and
other information about system elements to determine the
cost of storage and/or the availability of particular data in the
system. Exemplary information generated could include how
fast a particular department is using up available storage
space, how long data would take to recover over a particular
system pathway from a particular secondary storage device,
costs over time, etc. Moreover, in some embodiments, such
information may be used to determine or predict the overall
cost associated with the storage of certain information. The
cost associated with hosting a certain application may be
based, at least in part, on the type of media on which the data
resides, for example. Storage devices may be assigned to a
particular cost categories, for example. Further examples of

US 9,405,928 B2

35

costing techniques are described in U.S. Pat. No. 7,343,453,
which is incorporated by reference herein.

Any of the above types of information (e.g., information
related to trending, predictions, job, cell or component status,
risk, service level, costing, etc.) can generally be provided to
users via the user interface 158 in a single, integrated view or
console (not shown). The console may support a reporting
capability that allows for the generation of a variety of
reports, which may be tailored to a particular aspect of infor-
mation management. Report types may include: scheduling,
event management, media management and data aging.
Available reports may also include backup history, data aging
history, auxiliary copy history, job history, library and drive,
media in library, restore history, and storage policy, etc.,
without limitation. Such reports may be specified and created
at a certain point in time as a system analysis, forecasting, or
provisioning tool. Integrated reports may also be generated
that illustrate storage and performance metrics, risks and
storage costing information. Moreover, users may create their
own reports based on specific needs.

The integrated user interface 158 can include an option to
show a “virtual view” of the system that graphically depicts
the various components in the system using appropriate
icons. As one example, the user interface 158 may provide a
graphical depiction of one or more primary storage devices
104, the secondary storage devices 108, data agents 142 and/
or media agents 144, and their relationship to one another in
the information management system 100. The operations
management functionality can facilitate planning and deci-
sion-making. For example, in some embodiments, a user may
view the status of some or all jobs as well as the status of each
component of the information management system 100.
Users may then plan and make decisions based on this data.
For instance, a user may view high-level information regard-
ing storage operations for the information management sys-
tem 100, such as job status, component status, resource status
(e.g., communication pathways, etc.), and other information.
The user may also drill down or use other means to obtain
more detailed information regarding a particular component,
job, or the like. Further examples of some reporting tech-
niques and associated interfaces providing an integrated view
of an information management system are provided in U.S.
Pat. No. 7,343,453, which is incorporated by reference
herein.

The information management system 100 can also be con-
figured to perform system-wide e-discovery operations in
some embodiments. In general, e-discovery operations pro-
vide a unified collection and search capability for data in the
system, such as data stored in the secondary storage devices
108 (e.g., backups, archives, or other secondary copies 116).
For example, the information management system 100 may
construct and maintain a virtual repository for data stored in
the information management system 100 that is integrated
across source applications 110, different storage device types,
etc. According to some embodiments, e-discovery utilizes
other techniques described herein, such as data classification
and/or content indexing.

Information Management Policies

As indicated previously, an information management
policy 148 can include a data structure or other information
source that specifies a set of parameters (e.g., criteria and
rules) associated with secondary copy and/or other informa-
tion management operations.

One type of information management policy 148 is a stor-
age policy. According to certain embodiments, a storage
policy generally comprises a data structure or other informa-
tion source that defines (or includes information sufficient to

10

15

20

25

30

35

40

45

50

55

60

65

36

determine) a set of preferences or other criteria for perform-
ing information management operations. Storage policies can
include one or more of the following items: (1) what data will
be associated with the storage policy; (2) a destination to
which the data will be stored; (3) datapath information speci-
fying how the data will be communicated to the destination;
(4) the type of storage operation to be performed; and (5)
retention information specifying how long the data will be
retained at the destination (see, e.g., FIG. 1E).

As an illustrative example, data associated with a storage
policy can be logically organized into groups. In some cases,
these logical groupings can be referred to as “sub-clients”. A
sub-client may represent static or dynamic associations of
portions of a data volume. Sub-clients may represent mutu-
ally exclusive portions. Thus, in certain embodiments, a por-
tion of data may be given a label and the association is stored
as a static entity in an index, database or other storage loca-
tion. Sub-clients may also be used as an effective administra-
tive scheme of organizing data according to data type, depart-
ment within the enterprise, storage preferences, or the like.
Depending on the configuration, sub-clients can correspond
to files, folders, virtual machines, databases, etc. In one exem-
plary scenario, an administrator may find it preferable to
separate e-mail data from financial data using two different
sub-clients.

A storage policy can define where data is stored by speci-
fying a target or destination storage device (or group of stor-
age devices). For instance, where the secondary storage
device 108 includes a group of disk libraries, the storage
policy may specify a particular disk library for storing the
sub-clients associated with the policy. As another example,
where the secondary storage devices 108 include one or more
tape libraries, the storage policy may specify a particular tape
library for storing the sub-clients associated with the storage
policy, and may also specify a drive pool and a tape pool
defining a group of tape drives and a group of tapes, respec-
tively, for use in storing the sub-client data. While informa-
tion in the storage policy can be statically assigned in some
cases, some or all of the information in the storage policy can
also be dynamically determined based on criteria, which can
be set forth in the storage policy. For instance, based on such
criteria, a particular destination storage device(s) (or other
parameter of the storage policy) may be determined based on
characteristics associated with the data involved in a particu-
lar storage operation, device availability (e.g., availability of
a secondary storage device 108 or a media agent 144), net-
work status and conditions (e.g., identified bottlenecks), user
credentials, and the like).

Datapath information can also be included in the storage
policy. For instance, the storage policy may specify network
pathways and components to utilize when moving the data to
the destination storage device(s). In some embodiments, the
storage policy specifies one or more media agents 144 for
conveying data associated with the storage policy between the
source (e.g., one or more host client computing devices 102)
and destination (e.g., a particular target secondary storage
device 108).

A storage policy can also specify the type(s) of operations
associated with the storage policy, such as a backup, archive,
snapshot, auxiliary copy, or the like. Retention information
can specify how long the data will be kept, depending on
organizational needs (e.g., a number of days, months, years,
etc.)

Another type of information management policy 148 is a
scheduling policy, which specifies when and how often to
perform operations. Scheduling parameters may specify with
what frequency (e.g., hourly, weekly, daily, event-based, etc.)

US 9,405,928 B2

37

or under what triggering conditions secondary copy or other
information management operations will take place. Sched-
uling policies in some cases are associated with particular
components, such as particular logical groupings of data
associated with a storage policy (e.g., a sub-client), client
computing device 102, and the like. In one configuration, a
separate scheduling policy is maintained for particular logical
groupings of data on a client computing device 102. The
scheduling policy specifies that those logical groupings are to
be moved to secondary storage devices 108 every hour
according to storage policies associated with the respective
sub-clients.

When adding a new client computing device 102, admin-
istrators can manually configure information management
policies 148 and/or other settings, e.g., via the user interface
158. However, this can be an involved process resulting in
delays, and it may be desirable to begin data protection opera-
tions quickly, without awaiting human intervention. Thus, in
some embodiments, the information management system 100
automatically applies a default configuration to client com-
puting device 102. As one example, when one or more data
agent(s) 142 are installed on one or more client computing
devices 102, the installation script may register the client
computing device 102 with the storage manager 140, which
in turn applies the default configuration to the new client
computing device 102. In this manner, data protection opera-
tions can begin substantially immediately. The default con-
figuration can include a default storage policy, for example,
and can specify any appropriate information sufficient to
begin data protection operations. This can include a type of
data protection operation, scheduling information, a target
secondary storage device 108, data path information (e.g., a
particular media agent 144), and the like.

Other types of information management policies 148 are
possible, including one or more audit (or security) policies.
An audit policy is a set of preferences, rules and/or criteria
that protect sensitive data in the information management
system 100. For example, an audit policy may define “sensi-
tive objects” as files or objects that contain particular key-
words (e.g., “confidential,” or “privileged”) and/or are asso-
ciated with particular keywords (e.g., in metadata) or
particular flags (e.g., in metadata identifying a document or
email as personal, confidential, etc.). An audit policy may
further specify rules for handling sensitive objects. As an
example, an audit policy may require that a reviewer approve
the transfer of any sensitive objects to a cloud storage site, and
that if approval is denied for a particular sensitive object, the
sensitive object should be transferred to a local primary stor-
age device 104 instead. To facilitate this approval, the audit
policy may further specity how a secondary storage comput-
ing device 106 or other system component should notify a
reviewer that a sensitive object is slated for transfer.

Another type of information management policy 148 is a
provisioning policy. A provisioning policy can include a set of
preferences, priorities, rules, and/or criteria that specify how
client computing devices 102 (or groups thereof) may utilize
system resources, such as available storage on cloud storage
and/or network bandwidth. A provisioning policy specifies,
for example, data quotas for particular client computing
devices 102 (e.g., a number of gigabytes that can be stored
monthly, quarterly or annually). The storage manager 140 or
other components may enforce the provisioning policy. For
instance, the media agents 144 may enforce the policy when
transferring data to secondary storage devices 108. If a client
computing device 102 exceeds a quota, a budget for the client
computing device 102 (or associated department) is adjusted
accordingly or an alert may trigger.

20

25

30

35

40

45

55

38

While the above types of information management policies
148 have been described as separate policies, one or more of
these can be generally combined into a single information
management policy 148. For instance, a storage policy may
also include or otherwise be associated with one or more
scheduling, audit, or provisioning policies or operational
parameters thereof. Moreover, while storage policies are typi-
cally associated with moving and storing data, other policies
may be associated with other types of information manage-
ment operations. The following is a non-exhaustive list of
items the information management policies 148 may specify:

schedules or other timing information, e.g., specifying
when and/or how often to perform information manage-
ment operations;

the type of copy 116 (e.g., type of secondary copy) and/or
copy format (e.g., snapshot, backup, archive, HSM,
etc.);

a location or a class or quality of storage for storing sec-
ondary copies 116 (e.g., one or more particular second-
ary storage devices 108);

preferences regarding whether and how to encrypt, com-
press, deduplicate, or otherwise modify or transform
secondary copies 116;

which system components and/or network pathways (e.g.,
preferred media agents 144) should be used to perform
secondary storage operations;

resource allocation among different computing devices or
other system components used in performing informa-
tion management operations (e.g., bandwidth alloca-
tion, available storage capacity, etc.);

whether and how to synchronize or otherwise distribute
files or other data objects across multiple computing
devices or hosted services; and

retention information specifying the length of time primary
data 112 and/or secondary copies 116 should be
retained, e.g., in a particular class or tier of storage
devices, or within the information management system
100.

Policies can additionally specify or depend on a variety of
historical or current criteria that may be used to determine
which rules to apply to a particular data object, system com-
ponent, or information management operation, such as:

frequency with which primary data 112 or a secondary
copy 116 of a data object or metadata has been or is
predicted to be used, accessed, or modified;

time-related factors (e.g., aging information such as time
since the creation or modification of a data object);

deduplication information (e.g., hashes, data blocks, dedu-
plication block size, deduplication efficiency or other
metrics);

an estimated or historic usage or cost associated with dif-
ferent components (e.g., with secondary storage devices
108);

the identity of users, applications 110, client computing
devices 102 and/or other computing devices that cre-
ated, accessed, modified, or otherwise utilized primary
data 112 or secondary copies 116;

a relative sensitivity (e.g., confidentiality, importance) of a
data object, e.g., as determined by its content and/or
metadata;

the current or historical storage capacity of various storage
devices;

the current or historical network capacity of network path-
ways connecting various components within the storage
operation cell;

access control lists or other security information; and

the content of a particular data object (e.g., its textual
content) or of metadata associated with the data object.

US 9,405,928 B2

39

Exemplary Storage Policy and Secondary Storage Operations

FIG. 1E includes a data flow diagram depicting perfor-
mance of storage operations by an embodiment of an infor-
mation management system 100, according to an exemplary
storage policy 148A. The information management system
100 includes a storage manger 140, a client computing device
102 having a file system data agent 142A and an email data
agent 142B operating thereon, a primary storage device 104,
two media agents 144 A, 144B, and two secondary storage
devices 108A, 108B: a disk library 108A and a tape library
108B. As shown, the primary storage device 104 includes
primary data 112A, which is associated with a logical group-
ing of data associated with a file system, and primary data
112B, which is associated with a logical grouping of data
associated with email. Although for simplicity the logical
grouping of data associated with the file system is referred to
as a file system sub-client, and the logical grouping of data
associated with the email is referred to as an email sub-client,
the techniques described with respect to FIG. 1E can be
utilized in conjunction with data that is organized in a variety
of other manners.

As indicated by the dashed box, the second media agent
144B and the tape library 108B are “off-site”, and may there-
fore be remotely located from the other components in the
information management system 100 (e.g., in a different city,
office building, etc.). Indeed, “off-site” may refer to a mag-
netic tape located in storage, which must be manually
retrieved and loaded into a tape drive to be read. In this
manner, information stored on the tape library 108B may
provide protection in the event of a disaster or other failure.

The file system sub-client and its associated primary data
112A in certain embodiments generally comprise informa-
tion generated by the file system and/or operating system of
the client computing device 102, and can include, for
example, file system data (e.g., regular files, file tables, mount
points, etc.), operating system data (e.g., registries, event
logs, etc.), and the like. The e-mail sub-client, on the other
hand, and its associated primary data 112B, include data
generated by an e-mail application operating on the client
computing device 102, and can include mailbox information,
folder information, emails, attachments, associated database
information, and the like. As described above, the sub-clients
can be logical containers, and the data included in the corre-
sponding primary data 112A, 112B may or may not be stored
contiguously.

The exemplary storage policy 148 A includes backup copy
preferences (or rule set) 160, disaster recovery copy prefer-
ences rule set 162, and compliance copy preferences or rule
set 164. The backup copy rule set 160 specifies that it is
associated with a file system sub-client 166 and an email
sub-client 168. Each of these sub-clients 166, 168 are asso-
ciated with the particular client computing device 102. The
backup copy rule set 160 further specifies that the backup
operation will be written to the disk library 108 A, and desig-
nates a particular media agent 144 A to convey the data to the
disk library 108A. Finally, the backup copy rule set 160
specifies that backup copies created according to the rule set
160 are scheduled to be generated on an hourly basis and to be
retained for 30 days. In some other embodiments, scheduling
information is not included in the storage policy 148A, and is
instead specified by a separate scheduling policy.

The disaster recovery copy rule set 162 is associated with
the same two sub-clients 166, 168. However, the disaster
recovery copy rule set 162 is associated with the tape library
108B, unlike the backup copy rule set 160. Moreover, the
disaster recovery copy rule set 162 specifies that a different
media agent, namely 144B, will be used to convey the data to

40

45

40

the tape library 108B. As indicated, disaster recovery copies
created according to the rule set 162 will be retained for 60
days, and will be generated on a daily basis. Disaster recovery
copies generated according to the disaster recovery copy rule
set 162 can provide protection in the event of a disaster or
other catastrophic data loss that would affect the backup copy
116 A maintained on the disk library 108A.

The compliance copy rule set 164 is only associated with
the email sub-client 168, and not the file system sub-client
166. Compliance copies generated according to the compli-
ance copy rule set 164 will therefore not include primary data
112A from the file system sub-client 166. For instance, the
organization may be under an obligation to store and maintain
copies of email data for a particular period of time (e.g., 10
years) to comply with state or federal regulations, while simi-
lar regulations do not apply to the file system data. The com-
pliance copy rule set 164 is associated with the same tape
library 108B and media agent 144B as the disaster recovery
copy rule set 162, although a different storage device or media
agent could be used in other embodiments. Finally, the com-
pliance copy rule set 164 specifies that copies generated under
the compliance copy rule set 164 will be retained for 10 years,
and will be generated on a quarterly basis.

At step 1, the storage manager 140 initiates a backup opera-
tion according to the backup copy rule set 160. For instance,
a scheduling service running on the storage manager 140
accesses scheduling information from the backup copy rule
set 160 or a separate scheduling policy associated with the
client computing device 102, and initiates a backup copy
operation on an hourly basis. Thus, at the scheduled time slot
the storage manager 140 sends instructions to the client com-
puting device 102 (i.e., to both data agent 142 A and data agent
142B) to begin the backup operation.

At step 2, the file system data agent 142A and the email
data agent 142B operating on the client computing device 102
respond to the instructions received from the storage manager
140 by accessing and processing the primary data 112A,
112B involved in the copy operation, which can be found in
primary storage device 104. Because the operation is a
backup copy operation, the data agent(s) 142A, 142B may
format the data into a backup format or otherwise process the
data.

At step 3, the client computing device 102 communicates
the retrieved, processed data to the first media agent 144A, as
directed by the storage manager 140, according to the backup
copy rule set 160. In some other embodiments, the informa-
tion management system 100 may implement a load-balanc-
ing, availability-based, or other appropriate algorithm to
select from the available set of media agents 144A, 144B.
Regardless of the manner the media agent 144A is selected,
the storage manager 140 may further keep a record in the
storage manager database 146 of the association between the
selected media agent 144A and the client computing device
102 and/or between the selected media agent 144 A and the
backup copy 116A.

The target media agent 144A receives the data from the
client computing device 102, and at step 4 conveys the data to
the disk library 108 A to create the backup copy 116 A, again
at the direction of the storage manager 140 and according to
the backup copy rule set 160. The secondary storage device
108A can be selected in other ways. For instance, the media
agent 144A may have a dedicated association with a particu-
lar secondary storage device(s), or the storage manager 140 or
media agent 144A may select from a plurality of secondary
storage devices, e.g., according to availability, using one of
the techniques described in U.S. Pat. No. 7,246,207, which is
incorporated by reference herein.

US 9,405,928 B2

41

The media agent 144A can also update its index 153 to
include data and/or metadata related to the backup copy
116A, such as information indicating where the backup copy
116A resides on the disk library 108 A, data and metadata for
cache retrieval, etc. The storage manager 140 may similarly
update its index 150 to include information relating to the
storage operation, such as information relating to the type of
storage operation, a physical location associated with one or
more copies created by the storage operation, the time the
storage operation was performed, status information relating
to the storage operation, the components involved in the stor-
age operation, and the like. In some cases, the storage man-
ager 140 may update its index 150 to include some or all of the
information stored in the index 153 of the media agent 144A.
After the 30 day retention period expires, the storage manager
140 instructs the media agent 144 A to delete the backup copy
116A from the disk library 108A. Indexes 150 and/or 153 are
updated accordingly.

At step 5, the storage manager 140 initiates the creation of
a disaster recovery copy 116B according to the disaster recov-
ery copy rule set 162.

At step 6, illustratively based on the instructions received
from the storage manager 140 at step 5, the specified media
agent 144B retrieves the most recent backup copy 116 A from
the disk library 108A.

Atstep 7, again at the direction of the storage manager 140
and as specified in the disaster recovery copy rule set 162, the
media agent 144B uses the retrieved data to create a disaster
recovery copy 116B on the tape library 108B. In some cases,
the disaster recovery copy 1166 is a direct, mirror copy of the
backup copy 116A, and remains in the backup format. In
other embodiments, the disaster recovery copy 116B may be
generated in some other manner, such as by using the primary
data 112A, 1126 from the primary storage device 104 as
source data. The disaster recovery copy operation is initiated
once a day and the disaster recovery copies 116B are deleted
after 60 days; indexes are updated accordingly when/after
each information management operation is executed/com-
pleted.

At step 8, the storage manager 140 initiates the creation of
a compliance copy 116C, according to the compliance copy
rule set 164. For instance, the storage manager 140 instructs
the media agent 144B to create the compliance copy 116C on
the tape library 108B at step 9, as specified in the compliance
copy rule set 164. In the example, the compliance copy 116C
is generated using the disaster recovery copy 116B. In other
embodiments, the compliance copy 116C is instead gener-
ated using either the primary data 112B corresponding to the
email sub-client or using the backup copy 116 A from the disk
library 108A as source data. As specified, in the illustrated
example, compliance copies 116C are created quarterly, and
are deleted after ten years, and indexes are kept up-to-date
accordingly.

While not shown in FIG. 1E, at some later point in time, a
restore operation can be initiated involving one or more of the
secondary copies 116A, 116B, 116C. As one example, a user
may manually initiate a restore of the backup copy 116A by
interacting with the user interface 158 of the storage manager
140. The storage manager 140 then accesses data in its index
150 (and/or the respective storage policy 148A) associated
with the selected backup copy 116A to identify the appropri-
ate media agent 144 A and/or secondary storage device 108A.

In other cases, a media agent may be selected for use in the
restore operation based on a load balancing algorithm, an
availability based algorithm, or other criteria. The selected
media agent 144A retrieves the data from the disk library
108A. For instance, the media agent 144A may access its

25

30

40

45

55

42

index 153 to identify a location of the backup copy 116 A on
the disk library 108A, or may access location information
residing on the disk 108A itself.

When the backup copy 116A was recently created or
accessed, the media agent 144 A accesses a cached version of
the backup copy 116A residing in the index 153, without
having to access the disk library 108A for some or all of the
data. Once it has retrieved the backup copy 116 A, the media
agent 144 A communicates the data to the source client com-
puting device 102. Upon receipt, the file system data agent
142A and the email data agent 142B may unpackage (e.g.,
restore from a backup format to the native application format)
the data in the backup copy 116A and restore the unpackaged
data to the primary storage device 104.

Exemplary Applications of Storage Policies

The storage manager 140 may permit a user to specify
aspects of the storage policy 148A. For example, the storage
policy can be modified to include information governance
policies to define how data should be managed in order to
comply with a certain regulation or business objective. The
various policies may be stored, for example, in the manage-
ment database 146. An information governance policy may
comprise a classification policy, which is described herein.
An information governance policy may align with one or
more compliance tasks that are imposed by regulations or
business requirements. Examples of information governance
policies might include a Sarbanes-Oxley policy, a HIPAA
policy, an electronic discovery (E-Discovery) policy, and so
on.

Information governance policies allow administrators to
obtain different perspectives on all of an organization’s online
and offline data, without the need for a dedicated data silo
created solely for each different viewpoint. As described pre-
viously, the data storage systems herein build a centralized
index that reflects the contents of a distributed data set that
spans numerous clients and storage devices, including both
primary and secondary copies, and online and offline copies.
An organization may apply multiple information governance
policies in a top-down manner over that unified data set and
indexing schema in order to permit an organization to view
and manipulate the single data set through different lenses,
each of which is adapted to a particular compliance or busi-
ness goal. Thus, for example, by applying an E-discovery
policy and a Sarbanes-Oxley policy, two different groups of
users in an organization can conduct two very different analy-
ses of the same underlying physical set of data copies, which
may be distributed throughout the organization and informa-
tion management system.

A classification policy defines a taxonomy of classification
terms or tags relevant to a compliance task and/or business
objective. A classification policy may also associate a defined
tag with a classification rule. A classification rule defines a
particular combination of criteria, such as users who have
created, accessed or modified a document or data object; file
or application types; content or metadata keywords; clients or
storage locations; dates of data creation and/or access; review
status or other status within a workflow (e.g., reviewed or
un-reviewed); modification times or types of modifications;
and/or any other data attributes in any combination, without
limitation. A classification rule may also be defined using
other classification tags in the taxonomy. The various criteria
used to define a classification rule may be combined in any
suitable fashion, for example, via Boolean operators, to
define a complex classification rule. As an example, an E-dis-
covery classification policy might define a classification tag
“privileged” that is associated with documents or data objects
that (1) were created or modified by legal department staff, or

US 9,405,928 B2

43

(2) were sent to or received from outside counsel via email, or
(3) contain one of the following keywords: “privileged” or
“attorney” or “counsel”, or other like terms.

One specific type of classification tag, which may be added
to an index at the time of indexing, is an entity tag. An entity
tag may be, for example, any content that matches a defined
data mask format. Examples of entity tags mightinclude, e.g.,
social security numbers (e.g., any numerical content match-
ing the formatting mask XXX-XX-XXXX) credit card num-
bers (e.g., content having a 13-16 digit string of numbers),
SKU numbers, product numbers, etc.

A user may define a classification policy by indicating
criteria, parameters or descriptors of the policy via a graphical
user interface, such as a form or page with fields to be filled in,
pull-down menus or entries allowing one or more of several
options to be selected, buttons, sliders, hypertext links or
other known user interface tools for receiving user input, etc.
For example, a user may define certain entity tags, such as a
particular product number or project ID code that is relevant
in the organization. In some implementations, the classifica-
tion policy can be implemented using cloud-based tech-
niques. For example, the storage devices may be cloud stor-
age devices, and the storage manager 140 may execute cloud
service provider API over a network to classify data stored on
cloud storage devices.

Exemplary Secondary Copy Formatting

The formatting and structure of secondary copies 116 can
vary, depending on the embodiment. In some cases, second-
ary copies 116 are formatted as a series of logical data units or
“chunks” (e.g., 512 MB, 1 GB, 2 GB, 4 GB, or 8 GB chunks).
This can facilitate efficient communication and writing to
secondary storage devices 108, e.g., according to resource
availability. For example, a single secondary copy 116 may be
written on a chunk-by-chunk basis to a single secondary
storage device 108 or across multiple secondary storage
devices 108. In some cases, users can select different chunk
sizes, e.g., to improve throughput to tape storage devices.

Generally, each chunk can include a header and a payload.
The payload can include files (or other data units) or subsets
thereof included in the chunk, whereas the chunk header
generally includes metadata relating to the chunk, some or all
of which may be derived from the payload. For example,
during a secondary copy operation, the media agent 144,
storage manager 140, or other component may divide the
associated files into chunks and generate headers for each
chunk by processing the constituent files. The headers can
include a variety of information such as file identifier(s),
volume(s), offset(s), or other information associated with the
payload data items, a chunk sequence number, etc. Impor-
tantly, in addition to being stored with the secondary copy 116
on the secondary storage device 108, the chunk headers can
also be stored to the index 153 of the associated media
agent(s) 144 and/or the index 150. This is useful in some cases
for providing faster processing of secondary copies 116 dur-
ing restores or other operations. In some cases, once a chunk
is successtully transferred to a secondary storage device 108,
the secondary storage device 108 returns an indication of
receipt, e.g., to the media agent 144 and/or storage manager
140, which may update their respective indexes 153, 150
accordingly. During restore, chunks may be processed (e.g.,
by the media agent 144) according to the information in the
chunk header to reassemble the files.

Data can also be communicated within the information
management system 100 in data channels that connect the
client computing devices 102 to the secondary storage
devices 108. These data channels can be referred to as “data
streams”, and multiple data streams can be employed to par-

10

15

20

25

30

35

40

45

50

55

60

65

44

allelize an information management operation, improving
data transfer rate, among providing other advantages.
Example data formatting techniques including techniques
involving data streaming, chunking, and the use of other data
structures in creating copies (e.g., secondary copies) are
described in U.S. Pat. Nos. 7,315,923 and 8,156,086, and
8,578,120, each of which is incorporated by reference herein.

FIGS. 1F and 1G are diagrams of example data streams 170
and 171, respectively, which may be employed for perform-
ing data storage operations. Referring to FIG. 1F, the data
agent 142 forms the data stream 170 from the data associated
with a client computing device 102 (e.g., primary data 112).
The data stream 170 is composed of multiple pairs of stream
header 172 and stream data (or stream payload) 174. The data
streams 170 and 171 shown in the illustrated example are for
a single-instanced storage operation, and a stream payload
174 therefore may include both single-instance (“SI”) data
and/or non-SI data. A stream header 172 includes metadata
about the stream payload 174. This metadata may include, for
example, a length of the stream payload 174, an indication of
whether the stream payload 174 is encrypted, an indication of
whether the stream payload 174 is compressed, an archive file
identifier (ID), an indication of whether the stream payload
174 is single instanceable, and an indication of whether the
stream payload 174 is a start of a block of data.

Referring to FIG. 1G, the data stream 171 has the stream
header 172 and stream payload 174 aligned into multiple data
blocks. In this example, the data blocks are of size 64 KB. The
first two stream header 172 and stream payload 174 pairs
comprise a first data block of size 64 KB. The first stream
header 172 indicates that the length of the succeeding stream
payload 174 is 63 KB and that it is the start of a data block.
The next stream header 172 indicates that the succeeding
stream payload 174 has a length of 1 KB and that it is not the
start of a new data block. Immediately following stream pay-
load 174 is a pair comprising an identifier header 176 and
identifier data 178. The identifier header 176 includes an
indication that the succeeding identifier data 178 includes the
identifier for the immediately previous data block. The iden-
tifier data 178 includes the identifier that the data agent 142
generated for the data block. The data stream 171 also
includes other stream header 172 and stream payload 174
pairs, which may be for SI data and/or for non-SI data.

FIG. 1H is a diagram illustrating the data structures 180
that may be used to store blocks of SI data and non-SI data on
the storage device (e.g., secondary storage device 108).
According to certain embodiments, the data structures 180 do
not form part of a native file system of the storage device. The
data structures 180 include one or more volume folders 182,
one or more chunk folders 184/185 within the volume folder
182, and multiple files within the chunk folder 184. Each
chunk folder 184/185 includes a metadata file 186/187, a
metadata index file 188/189, one or more container files 190/
191/193, and a container index file 192/194. The metadata file
186/187 stores non-SI data blocks as well as links to SI data
blocks stored in container files. The metadata index file 188/
189 stores an index to the data in the metadata file 186/187.
The container files 190/191/193 store SI data blocks. The
container index file 192/194 stores an index to the container
files 190/191/193. Among other things, the container index
file 192/194 stores an indication of whether a corresponding
block in a container file 190/191/193 is referred to by a link in
a metadata file 186/187. For example, data block B2 in the
container file 190 is referred to by a link in the metadata file
187 in the chunk folder 185. Accordingly, the corresponding
index entry in the container index file 192 indicates that the
data block B2 in the container file 190 is referred to. As

US 9,405,928 B2

45

another example, data block B1 in the container file 191 is
referred to by a link in the metadata file 187, and so the
corresponding index entry in the container index file 192
indicates that this data block is referred to.

As an example, the data structures 180 illustrated in FIG.
1H may have been created as a result of two storage opera-
tions involving two client computing devices 102. For
example, a first storage operation on a first client computing
device 102 could result in the creation of the first chunk folder
184, and a second storage operation on a second client com-
puting device 102 could result in the creation of the second
chunk folder 185. The container files 190/191 in the first
chunk folder 184 would contain the blocks of SI data of the
first client computing device 102. If the two client computing
devices 102 have substantially similar data, the second stor-
age operation on the data of the second client computing
device 102 would result in the media agent 144 storing pri-
marily links to the data blocks of the first client computing
device 102 that are already stored in the container files 190/
191. Accordingly, while a first storage operation may result in
storing nearly all of the data subject to the storage operation,
subsequent storage operations involving similar data may
result in substantial data storage space savings, because links
to already stored data blocks can be stored instead of addi-
tional instances of data blocks.

Ifthe operating system of the secondary storage computing
device 106 on which the media agent 144 operates supports
sparse files, then when the media agent 144 creates container
files 190/191/193, it can create them as sparse files. A sparse
file is type of file that may include empty space (e.g., a sparse
file may have real data within it, such as at the beginning of the
file and/or at the end of the file, but may also have empty space
in it that is not storing actual data, such as a contiguous range
of'bytes all having a value of zero). Having the container files
190/191/193 be sparse files allows the media agent 144 to free
up space in the container files 190/191/193 when blocks of
data in the container files 190/191/193 no longer need to be
stored on the storage devices. In some examples, the media
agent 144 creates a new container file 190/191/193 when a
container file 190/191/193 either includes 100 blocks of data
or when the size of the container file 190 exceeds 50 MB. In
other examples, the media agent 144 creates a new container
file 190/191/193 when a container file 190/191/193 satisfies
other criteria (e.g., it contains from approximately 100 to
approximately 1000 blocks or when its size exceeds approxi-
mately 50 MB to 1 GB).

In some cases, a file on which a storage operation is per-
formed may comprise a large number of data blocks. For
example, a 100 MB file may comprise 400 data blocks of size
256 KB. If such a file is to be stored, its data blocks may span
more than one container file, or even more than one chunk
folder. As another example, a database file of 20 GB may
comprise over 40,000 data blocks of size 512 KB. If such a
database file is to be stored, its data blocks will likely span
multiple container files, multiple chunk folders, and poten-
tially multiple volume folders. Restoring such files may
require accessing multiple container files, chunk folders, and/
or volume folders to obtain the requisite data blocks.
Example Client Computing Environment

FIG. 2 is ablock diagram illustrating an example of a client
computing environment 200 including a client computing
device 102 and a primary storage device 104. As previously
described, for example with respect to FIG. 1C, the client
computing device 102 may include one or more applications
110 and one or more data agents 142. At least some of the data
agents 142 may correspond to one or more of the applications
110 and, as previously described, may facilitate data opera-

25

40

45

55

46

tions with respect to the corresponding application(s). Fur-
ther, one or more of the data agents 142 may facilitate man-
aging and/or interacting with a file system 202 of the client
computing device 102. This file system 202 may include any
type of file system that can be used by a client computing
device 102. For example, the file system 202 may include a
Microsoft Windows file system (e.g., FAT, NTFS, etc.), a
Linux based file system, a Unix based file system, an Apple
Macintosh file system (e.g., HFS Plus), and the like. In some
instances, the client computing device 102 may include mul-
tiple file systems 202 of the same type or of a different type.

In addition to the previously described systems, the client
computing device 102 may include a filter driver 204 that can
interact with data (e.g., production data) associated with the
applications 110. For instance, the filter driver 204 may com-
prise a file system filter driver, an operating system driver, a
filtering program, a data trapping program, an application, a
module of one or more of the applications 110, an application
programming interface (“API”), or other like software mod-
ule or process that, among other things, monitors and/or inter-
cepts particular application requests targeted at a file system,
another file system filter driver, a network attached storage
(“NAS”), a storage area network (“SAN”), mass storage and/
or other memory or raw data. In some embodiments, the filter
driver 204 may reside in the I/O stack of an application 110
and may intercept, analyze and/or copy certain data traveling
to or from the application 110 from or to a file system.

In certain embodiments, the filter driver 204 may intercept
data modification operations that include changes, updates
and new information (e.g., data writes) with respect to the
application(s) 110 of interest. For example, the filter driver
204 may locate, monitor and/or process one or more of the
following with respect to a particular application 110, appli-
cation type, or group of applications: data management
operations (e.g., data write operations, file attribute modifi-
cations), logs or journals (e.g., NTFS change journal), con-
figuration files, file settings, control files, other files used by
the application 110, combinations of the same or the like. In
certain embodiments, such data may also be gathered from
files across multiple storage systems within the client com-
puting device 102. Furthermore, the filter driver 204 may be
configured to monitor changes to particular files, such as files
identified as being associated with data of the applications
110.

In certain embodiments, multiple filter drivers 204 may be
deployed on a computing system, each filter driver being
dedicated to data of a particular application 110. In such
embodiments, not all information associated with the client
computing system 102 may be captured by the filter drivers
204 and thus, the impact on system performance may be
reduced. In other embodiments, the filter driver 204 may be
suitable for use with multiple application types and/or may be
adaptable or configurable for use with multiple applications
110. For example, one or more instances of customized or
particularizing filtering programs may be instantiated based
on application specifics or other needs or preferences.

The filter driver 204 may include a number of modules or
subsystems that can facilitate performing various operations
with respect to the applications 110 and/or file system 202.
For example, the filter driver 204 may include a number of
modules or subsystems to facilitate encrypting data and/or
files. As a second example, the filter driver 204 may include
modules or subsystems to facilitate presenting encrypted files
to an authorized user. In certain embodiments, the modules or
subsystems of the filter driver 204 can include one or more of
the following: an interface agent 220, an encryption module

US 9,405,928 B2

47

222, a secure file access module 224, an encryption rules
engine 226, a decryption module 228, and a file monitor 230.

Using the file monitor 230, the filter driver 204 can monitor
a user’s interaction with a file. This interaction can include
accessing the file via the file system 202, one or more appli-
cations 110, one or more data agents 142, or through any other
method of accessing or interacting with a file. In some cases,
the file monitor 230 may be configured to identify when a file
is modified and/or created. Monitoring the creation of a file
can include identifying a “new” file operation, a “save as”
operation, a “copy’ operation, or any other operation that can
result in a new file or a new copy of an existing file.

The encryption rules engine 226 can include any system
configured to determine whether a file is to be encrypted.
Generally, the file monitor 230 is configured to trigger the
encryption rules engine 226 determining whether a file is to
be encrypted. For example, the encryption rules engine 226
may determine whether to encrypt a file in response to the file
monitor 230 detecting a write access to the file, or a file
creation operation (e.g., a “new” operation, a “save as” opera-
tion, etc.) that results in the creation of the file. Alternatively,
the encryption rules engine 226 may determine whether a file
is to be encrypted each time the file is accessed regardless of
the type of file access. In other cases, the encryption rules
engine 226 may determine whether a file should be encrypted
in response to a command received from another system, such
as a data agent 142 or the storage manager 140.

Determining whether to encrypt a file can be based on a set
of'encryption rules. In some instances, these encryption rules
may be included with the encryption rules engine 226. Alter-
natively, or in addition, the encryption rules may be stored at
an encryption rules repository 208 that is accessible by the
filter driver 204 and/or the encryption rules engine 226 of the
filter driver 204. The encryption rules can include any rule for
determining whether a file is to be encrypted. These encryp-
tion rules may be based on one or more users and/or pieces of
metadata associated with the file.

For example, an encryption rule may be based on one or
more of the following: the author of a file, the owner of a file,
the editor of a file, the type of file, the location of the file, the
name of the file, the age of the file, a tag associated with the
file, whether the file and/or a version of the file was previously
encrypted, keywords associated with the file name and/or the
contents of the file, and the like. Unless stated otherwise, the
phrase “a version of the file” as used herein generally refers to
the file and/or a copy of the file that includes different content
than the file currently being evaluated (e.g., an older copy of
the file, a pre-edited version of a file, etc.).

In some cases, the characteristics of a file used to determine
whether to encrypt a file may be weighted. For example, the
type of the file may be weighted such that it has a greater
affect in determining whether to encrypt a file than the author
of the file.

Once the encryption rules engine 226 determines that a file
should be encrypted, the encryption module 222 can encrypt
the file using an encryption algorithm. In some cases, the
encryption algorithm may be specified as part of an encryp-
tion rule. Once the file has been encrypted, the encryption
module 222 may delete any unencrypted copies of the file
located on the client computing device 102 and/or the primary
storage device 104. Further, in some cases, the encryption
module 222 may cause a cached copy of the file to be locked
or inaccessible to prevent access to unencrypted copies or
fragments of a file that has been identified for encryption by
the encryption rules engine 226.

As stated above, the filter driver 204 may include an inter-
face agent 220. The interface agent 220 may be configured to

10

15

20

25

30

35

40

45

50

55

60

65

48

control how files, or references to files (e.g., file names, file
icons, etc.), are displayed to a user. In some cases, the inter-
face agent 220 can control how files are displayed in a variety
of display locations, such as in a window, in a listing of files,
on a desktop display, in an application window or viewer, etc.

Further, in some cases, the interface agent 220 may be
configured to present encrypted files as if the files were unen-
crypted. Further, the interface agent 220 may be configured to
present files differently based on the user accessing the client
computing device 102 as determined by a user identifier
and/or authentication information obtained via an authenti-
cation system 206. For example, an administrator may see the
encryption status of a file via an annotation on an icon or a
special file extension. However, the interface agent 220 may
cause all files to appear as unencrypted files to a non-admin-
istrator user. Further, the interface agent 220 may cause at
least some encrypted files to be hidden from view altogether
for a user who does not have authorization to decrypt the
hidden encrypted files.

When a user and/or application 110 attempts to access a
file, the secure file access module 224 can determine whether
the file is an encrypted file based on, for example, the file
name. If the file is not encrypted, the file access operation is
provided to the file system 202 for processing. If the file is
encrypted, the secure file access module 224 can determine
whether to decrypt the file based on, for example, authenti-
cation information associated with the user.

Generally, the secure file access module 224 can access the
authentication information that the authentication system 206
obtained when the user logged in to the client computing
device 102. Advantageously, in certain embodiments, by
using the authentication information provided at login, the
request to access a file can be processed without the user
being prompted with a request for authentication at the time
the fileis accessed. Thus, in some cases, the file access request
may be processed without the user being made aware of the
encryption status of the file.

In cases where the secure file access module 224 deter-
mines that a file is encrypted and that auser and/or application
110 is authorized to access the file, the secure file access
module 224 can provide the encrypted file to a decryption
module 228. The decryption module 228 can decrypt the file
and provide the file to the application 110 for use or presen-
tation to a user. In some cases, as will be described in more
detail below, the decryption module 228 can determine the
type of encryption used to encrypt the file and select a corre-
sponding decryption algorithm to decrypt the file. Further, in
cases where an asymmetric key was used to encrypt the file,
the decryption module 228 can identify a public key corre-
sponding to the private key used to encrypt the file. The
decryption module 228 can then use the public key to decrypt
the file.

As indicated above, the primary storage device 104 can
store the unencrypted files. Further, the primary storage
device 104 can also store encrypted files, which may be
encrypted by the encryption module 222 or otherwise. As
illustrated in FIG. 2, the primary storage device 104 can
include an unencrypted files repository 210 configured to
store unencrypted files and an encrypted files repository 212
configured to store encrypted files.

Although encrypted files and unencrypted files may be
stored in different repositories of the primary storage device
104, the encrypted and unencrypted files may be presented to
a user without differentiating between the encryption status
of' the files and the storage location of the file in the primary
storage device 104. Alternatively, the encrypted files may be
presented to a user in a separate location of a file storage

US 9,405,928 B2

49

display and/or with an indication of the encryption status of
the file. Further, in some cases, the primary storage device
104 may be divided into a fewer or greater number of reposi-
tories, which may or may not be divided based on the encryp-
tion status of files stored by the primary storage device 104.

Generally, although not necessarily, a client computing
device 102 includes an authentication system 206. This
authentication system 206 can be configured to authenticate a
user attempting to use the client computing device 102 and/or
attempting to access files stored on the primary storage device
104. Further, in some cases, the authentication system 206
can provide authentication information to the secure file
access module 224 to facilitate determining whether a user is
authorized to access an encrypted file. In certain embodi-
ments, the authentication system 206 may obtain additional
authentication information from a user when the user
attempts to access an encrypted file. This information can
then be provided to the secure file access module 224. In other
embodiments, the authentication system 206 provides previ-
ously obtained authentication information to the secure
access module 224 and does not prompt a user for additional
information when the user attempts to access an encrypted
file.

Example of an Encryption Determination Process

FIG. 3 illustrates an example embodiment of an encryption
determination process 300. The process 300 can be imple-
mented, at least in part, by any system that can detect when a
file is created or modified and can determine whether to
encrypt the file based on a set of encryption rules. For
example, the process 300, in whole or in part, can be imple-
mented by the filter driver 204, the file monitor 230, the
encryption rules engine 226, and the encryption module 222,
to name a few. Although any number of systems, in whole or
in part, can implement the process 300, to simplify discus-
sion, portions of the process 300 will be described with ref-
erence to particular systems.

The process 300 begins at block 302 where, for example,
the file monitor 230 monitors file access operations to detect
file write operations. Typically, the file monitor 230 is moni-
toring file access operations for files stored at the primary
storage device 104. However, in some cases, the file monitor
230 may monitor file access operations for files stored else-
where, such as on a portable storage device (e.g., a USB key,
an external disk drive, etc.). In some cases, the file write
operations can include write commands, file create com-
mands, file copy commands, or any commands or operations
that can result in a file being modified or created, or that
indicate that a file is being modified or created. For example,
the file monitor 230 may detect a “New” command, a “Save”
command, a “Save As” command, a “Copy” command, or any
operations related to such commands. At decision block 304,
the file monitor 230 determines whether a file write, or file
creation, operation is detected with respect to a file. If not, the
file monitor 230 continues to monitor operations at the block
302.

Generally, the operations monitored are commands
received from the applications 110 and/or the data agents 142.
However, in some cases, the file monitor 230 can monitor
commands or operations received from any source that can
access a file. For example, in some cases, commands may be
received from a processor or an application-specific proces-
sor (not shown) that is included as part of the client computing
device 110. As a second example, commands may be received
from the storage manager 140 or a media agent 144.

At block 306, the encryption rules engine 226 accesses
metadata, or file metadata, associated with the file. Alterna-
tively, the file monitor 230 may access the metadata. In some

20

25

40

45

50

55

50

cases, some of the metadata may be accessed and/or deter-
mined by the file monitor 230 and some of the metadata may
be accessed and/or determined by the encryption rules engine
226. The metadata can include any type of data associated
with the file, including data associated with users associated
with the file. Further, the metadata can include any type of
data related to the file that can be the basis, at least in part, of
an encryption rule for determining whether to encrypt the file.

For example, the metadata can include: the name of the file,
the file type of the file (e.g., a word processing file, a spread-
sheet, a PDF file, a CAD file, an audio file, a video file, etc.),
an author of the file, users who have authorization to access
the file, one or more applications capable of reading or
accessing the file (e.g., Microsoft Word, Microsoft Excel,
Adobe Acrobat, Corel WinDVD, etc.), the location of the file
within a file organization structure, the time the file was
created, the time the file was last modified and/or accessed,
the size of the file, and the like. In some cases, the metadata
can include a designation and/or tag associated with the file.
For example, an encryption determination may be made
based on whether a user or application designated a file or set
of files for encryption, either through explicit designation or
by inclusion in a location (e.g., directory) that has been des-
ignated for encryption. As a second example, files that are
designated for backup or for backup to a particular location or
media may be designated for encryption.

The encryption rules engine 226 accesses one or more
encryption rules at block 308 for determining whether to
encrypt the file associated with the file write detected at the
decision block 304. In some cases, the encryption rules are
accessed from the encryption rules repository 208. In other
cases, the encryption rules are included as part of the filter
driver 204. Whether included with the filter driver, or stored at
the encryption rules repository 208, the encryption rules may
be provided by the storage manager 140, a user (e.g., an
administrator), a provider of the filter driver 204, or any other
user or entity that can provide encryption rules.

As described above, the encryption rules can include any
rule for determining whether a file is to be encrypted. Typi-
cally, the encryption rules are based on the metadata associ-
ated with the file that the encryption rules engine 226 is
analyzing to make an encryption determination. However, in
some cases, the encryption rules may be based on alternative
or additional factors, such as a user associated with the client
computing device 102, the role of the client computing device
102, a geographic and/or network location of the client com-
puting device 102, and the like.

At decision block 310, the encryption rules engine 226
determines whether the file metadata, or at least a subset of the
metadata, satisfies one or more of the encryption rules. In
some cases, decision block 310 includes determining whether
the alternative or additional factors described above satisfy
one or more of the encryption rules. If the file metadata does
not satisfy any of the encryption rules, the file write, and/or
file creation, operation is allowed to proceed at block 312. In
other words, the operation may be performed as if the filter
driver 204 were not present or as if the blocks 302-310 were
not performed. In some cases, the block 312 may include
storing an unencrypted version of a previously encrypted file
if the file previously satisfied an encryption rule, but no longer
satisfies an encryption rule. In certain embodiments, the
block 312 can include informing a user that an encryption rule
is not satisfied and may present the user with an option to
encrypt the file despite the file not satisfying one of the
encryption rules.

If the encryption rules engine 226 determines that the file
metadata does satisty at least one of the encryption rules as

US 9,405,928 B2

51

the decision block 310, the filter driver 204 locks one or more
cache copies of the file at block 314. Advantageously, in some
embodiments, by locking cache copies of the file, users and/
or applications are unable to access unencrypted versions or
copies of the file. In some embodiments, the block 314 is
optional.

Atblock 316, the encryption module 222 encrypts the file.
In some cases, the encryption module 222 uses the same
encryption algorithm to encrypt the file regardless of the
encryption rule satisfied by the metadata and/or the file to be
encrypted. In other cases, the encryption module 222 selects
anencryption algorithm based on the encryption rule satisfied
and/or the file to be encrypted. If multiple encryption rules are
satisfied, the encryption module 222 may select the encryp-
tion algorithm based on a preference, weighting, ranking, or
other factor associated with the satisfied encryption rules. In
some embodiments, the block 316 includes deleting or ren-
dering inaccessible unencrypted versions or copies of the file.

In some cases, the block 316 can include modifying an
extension of the file or appending an addition extension to the
file to indicate the encryption status of the file. For example,
the encryption module 222 may change a file extension to
.CVX to indicate the file is encrypted. Thus, in some cases, an
encrypted PDF file X may be renamed from X.pdfto X.cvx.
Alternatively, the encryption module 222 may append an
encryption extension (e.g., .CVX) indicating the encryption
status of the file after the file’s unencrypted extension. Thus,
in some cases, an encrypted PDF file Y may be renamed from
Y.pdf to Y.pdf.cvx. The encrypted file may be stored at the
location indicated by the command detected at the decision
block 304. Alternatively, the encrypted file may be stored at
an alternate location. This alternative location may be desig-
nated for encrypted files and/or may be designated by the
encryption rule satisfied by the file.

The encryption module 222 stores metadata associated
with the encryption status of the file at block 318. The meta-
data may be stored with the encrypted file or at another
location. For example, the metadata may be stored at the
primary storage device 104, with the file or in another loca-
tion, and/or the metadata may be stored at the storage man-
ager 140. The metadata can include information related to the
encryption of the file. For example, the metadata can include
the encryption status of the file, an identification of the
encryption rule satisfied, an identification of the encryption
algorithm used to encrypt the file, and the like. In some
embodiments, the block 318 is optional.

Example of an Encrypted File Display Process

FIG. 4 illustrates an example embodiment of an encrypted
file display process 400. The process 400 can be imple-
mented, at least in part, by any system that can cause a
reference or link to a file to be presented to a user. Further, the
process 400 can be implemented by any system that can cause
the reference or link to the file to be presented as a reference
or link to an unencrypted file regardless of the encryption
status of the file. For example, the process 400, in whole or in
part, can be implemented by the filter driver 204, the interface
agent 220, and the secure file access module 224, to name a
few. Although any number of systems, in whole or in part, can
implement the process 400, to simplify discussion, portions
of the process 400 will be described with reference to par-
ticular systems.

The process 400 begins at block 402 where, for example,
the interface agent 220 accesses an encrypted file. In some
cases, the interface agent 220 may receive the encrypted file
from the file system 202, an application 110, the primary
storage device 104, a cache (not shown), a processor (not
shown), or any other source that can provide the encrypted file

5

10

20

25

30

40

45

50

55

60

65

52

to the interface agent 220. Alternatively, the interface agent
220 may scan a storage location (e.g., the primary storage
device 104) to identify encrypted files at the block 402. In
some embodiments, the process 400 may occur as part of an
encryption process, such as the process 300. In such embodi-
ments, the process 400, in whole or in part, may occur as part
of'the block 316 or subsequent to the block 316.

Atblock 404, the interface agent 220 identifies the file type
of a pre-encrypted version or copy of the encrypted file. In
other words, the interface agent 220 identifies the file type of
the file (e.g., PDF file, spreadsheet file, word processing file,
video file, audio file, image file, etc.) before the file was
encrypted. The interface agent 220 may determine the file
type based on a reference to the file. This reference generally
refers to what is displayed to the user to identify the file or the
existence of the file to the user. For example, the reference can
include the name of the file, a file extension of the file, a link
to the file, or an image or icon associated with the file, to name
a few. Generally, but not necessarily, the file extension of the
encrypted file differs from the file extension of the unen-
crypted file. Further, in some cases, the interface agent 220
may identify the file type based on metadata associated with
the pre-encrypted file and/or the encrypted file.

The interface agent 220 identifies one or more application
programs associated with the pre-encrypted version of the file
at block 406. By identifying the application programs asso-
ciated with the pre-encrypted version of the file, the interface
agent 220 can, in some cases, cause the encrypted file to be
associated with the same application programs. Further, the
interface agent 220 can, in some cases, cause a reference to
the encrypted file to include an icon or other identifying
information that informs the user that the encrypted file is
associated with an application that typically can access the
non-encrypted version of the file.

With many proprietary file formats or types, there may
exist only a single application associated with the file. How-
ever, in some cases (e.g., PDF files), multiple applications
may be capable of accessing a particular file type and thus
multiple applications may be associated with the pre-en-
crypted version of the file. In some cases, there may not exist
anapplication associated with the file. For example, the appli-
cation that created the file may have been removed from the
client computing device 102, or the file may have been cre-
ated on another computing device and then provided to the
client computing device 102. In such cases, the interface
agent 220 may still determine an application capable of
accessing the pre-encrypted file based on metadata associated
with the file and/or based on information available on a net-
work. In other cases, the interface agent 220 may identify the
file as being associated with an unknown file type. In some
embodiments, the block 406 is optional.

At block 408, the interface agent 220 displays, or causes a
display screen to display, a reference to the encrypted file that
appears as if it were the reference to the unencrypted file. In
other words, the reference to the encrypted file mimics, at
least in part, a reference to the unencrypted file. Thus, in some
cases, the reference to the encrypted file may have the same
file name, file extension, icon or other file reference charac-
teristic as a reference to the unencrypted file. Further, as
described in more detail below, at least some of the metadata
associated with the encrypted file may match at least some of
the metadata associated with the unencrypted file thereby, in
some cases, preventing a user and/or application from using
the metadata to determine whether a file is encrypted.

Advantageously, in some embodiments, by displaying the
reference to the encrypted file as if it were a reference to the
unencrypted file, the file can be organized by the file system

US 9,405,928 B2

53

202 and identified by a user with the same ease as if the file
were not encrypted. In some cases, the user may not know
whether the file is encrypted and can organize and access the
file without knowing the encryption status of the file. Further,
in some instances, the reference to the encrypted file may be
based on a reference to the unencrypted file, but may or may
not mimic the reference to the unencrypted file.

Moreover, the reference to the encrypted file may be simi-
lar, but not identical to a reference to the unencrypted file. For
example, the reference to the encrypted file may include an
annotation, such as a mark on the icon of the encrypted file
that indicates the encryption status of the file. This annotation
of the icon can inform the user that the file is an encrypted
version of the unencrypted file. In other cases, the icon of the
encrypted file may be identical to the icon of the unencrypted
file, but the file extension may differ. Advantageously, in
some embodiments, by non-identically mimicking the refer-
ence to the unencrypted file, encrypted and unencrypted files
can be organized together, but still be distinguishable. Fur-
ther, the file types of the encrypted files can be identified as
easily as if the files were unencrypted files while maintaining
the ability for the user to distinguish between encrypted and
unencrypted files by, for example, glancing at a reference to
the file (e.g., the file icon or file name).

As previously described, in some implementations, the file
extension of the encrypted file may differ from the file exten-
sion of the unencrypted file. For example, a .CVX extension
may be appended to an existing file extension. In some such
cases, the added or modified extension of the encrypted file
may be hidden from view by default thereby, in some cases,
displaying the original file extension or no file extension to
the user.

Example of an Encrypted File Access Process

FIG. 5 illustrates an example embodiment of an encrypted
file access process 500. The process 500 can be implemented,
at least in part, by any system that can provide a user and/or
application with access to a file that has been encrypted using
an encryption process, such as the process 300. For example,
the process 500, in whole or in part, can be implemented by
the filter driver 204, the interface agent 220, the secure file
access module 224, the decryption module 228, and the
authentication system 206, to name a few. Although any num-
ber of systems, in whole or in part, can implement the process
500, to simplify discussion, portions of the process 500 will
be described with reference to particular systems.

The process 500 begins at block 502 where, for example,
the authentication system 206 authenticates a user. The block
502 may be performed in response to the user attempting to
access the client computing device 102 (e.g., at login), access
an encrypted file, or in some cases, in response to both an
attempt to access the client computing device 102 and an
attempt to access an encrypted file. In certain embodiments,
the block 502 is optional.

At block 504, the secure file access module 224 receives a
request to access a file stored in the primary storage device
104. Generally, the request is sent by a user of the client
computing device 102 or an application 110 to the file system
202 and is intercepted by the filter driver 204, which provides
the request to the secure access module 224. However, in
some cases, the request to access the file may be addressed to
the filter driver 204. In some embodiments, the request to
access the file may be received from a remote system. For
example, the request to access the file may be received from
another client computing device, from a mobile device, from
a server, or from any other computing device that can request
file access on behalf of a user or application.

10

15

20

25

30

35

40

45

50

55

60

65

54

The secure file access module 224 determines the encryp-
tion status of the file at block 506. Determining the encryption
status of the file can include examining the file extension of
the file, the icon associated with the file, metadata associated
with the file, the storage location of the file, a table that
identifies encrypted files and/or the encryption status of files,
and any other data or source that can be used to determine the
encryption status of the file. At decision block 508, the secure
file access module 224 determines whether the encryption
status of the file indicates that the file is encrypted. If not, the
secure file access module 224 at block 510 grants file access
to the user, or application 110, that provided the request to
access the file at the block 504. In some cases, granting access
to the file involves the secure file access module 224 allowing
the file access request to proceed. In other words, the file
access request of the block 504 may be performed as if the
filter driver 204 were not present.

In some embodiments, the block 510 may include addi-
tional operations. For example, the block 510 may include
logging access to the file or notifying a user (e.g., an admin-
istrator) that the file was accessed.

If'the secure file access module 224 determines that the file
is encrypted at decision block 508, the authentication system
206 authenticates the user at block 512. Authenticating the
user can include determining whether the user is authorized to
access the encrypted file. In some embodiments, the secure
file access module uses authentication information obtained
at the block 502 to identify the user. The authentication infor-
mation can then be used to determine whether the user is
authorized to access the file without obtaining additional
information from the user. Advantageously, in some cases, by
using information obtained at the block 502 in place of
requesting authentication information at the block 512, auser
can access a file without being aware of whether the file is
encrypted.

In some cases, the secure file access module 224 can deter-
mine the files the user is authorized to access, encrypted or
not, when the user is authenticated at the block 502. In such
cases, the block 512 is unnecessary. Thus, in some embodi-
ments, the block 512 is optional. In other embodiments, the
block 502 may be optional, and the secure file access module
may determine whether the user is authorized to access a file
by, in part, using the authentication system 206 to authenti-
cate the user at the block 512.

In certain embodiments, the secure file access module 224
may access metadata and/or access control information asso-
ciated with a user to determine whether the user is authorized
to access the encrypted file. This metadata and/or access
control information may be stored at the primary storage
device 104, on a device on the network, in a secure storage
location associated with the client computing device 102, on
a smartcard or other personal security device associated with
the user, or at any other location that can be used to store
authorization information associated with a user.

Atblock 514, assuming that it is determined that the user is
authorized to access the encrypted file, the decryption module
228 decrypts the encrypted file. Decrypting the file can
include identifying the type of encryption used to encrypt the
file and determining a corresponding decryption algorithm.
The decryption module 228 can determine the type of encryp-
tion used based on a variety of factors including, for example,
metadata associated with the file, metadata associated with
the user, a source of the file, a type of the file, a header
associated with the file, a storage location of the file, etc. In
some cases, decrypting the file may include identifying a
public key to decrypt the file when the file was encrypted with
a corresponding private key.

US 9,405,928 B2

55

If the user was not successfully authenticated, or was not
authorized to access the file, the request to access the file is
rejected. Rejecting access to the file can include logging the
attempted file access and/or alerting another user (e.g., an
administrator) regarding the attempted file access.

At block 516, the secure file access module 224 provides
the user and/or application 110 with access to the decrypted
file. In some cases, providing access to the decrypted file can
include sending the decrypted file over a network to a remote
device. Assuming the file was not modified, the filter driver
may delete the decrypted file upon detecting the user and/or
application 110 has finished accessing the file (e.g., upon
detection of a “file close” command). If the file is modified,
the process 300 may in some cases be initiated.

Example of a File Backup Process

FIG. 6 illustrates an example embodiment of a file backup
process 600. The process 600 can be implemented, at least in
part, by any system that can backup a file to a secondary
storage device 108. For example, the process 600, in whole or
in part, can be implemented by the storage manager 140, a
data agent 142, a secondary storage computing device 106,
and a media agent 144, to name a few. Although any number
of systems, in whole or in part, can implement the process
600, to simplify discussion, portions of the process 600 will
be described with reference to particular systems.

The process 600 begins at block 602 where, for example, a
data agent 142 associated with an application 110 identifies a
file accessible by the application 110 for backup on a second-
ary storage device 108. In some cases, the data agent 142
performs the block 602 in accordance with a backup policy
provided or established by the storage manager 140. Alterna-
tively, the storage manager 140 may perform the block 602. In
another alternative, the storage manager 140 may initiate the
process 600 by providing a backup command to the data agent
142, which may or may not identify the file for backup. In
other cases, a user may identify the file for backup on the
secondary storage device 108. The process 600 may be initi-
ated as part of a scheduled or automatic backup process, or
may be initiated manually (e.g., in response to a user com-
mand).

Atblock 604, the data agent 142 accesses the file identified
at the block 602 from the primary storage 104. The data agent
142 can provide the file to a secondary storage computing
device 106 associated with a media agent 144. Alternatively,
the data agent 142 may provide the file to the storage manager
140, which can then provide the file to the secondary storage
computing device 106. In some embodiments, the data agent
142 makes the file available to the secondary storage comput-
ing device 106. The media agent 144 of the secondary storage
computing device 106 can then access the client computing
device 102 to obtain the file. Generally, regardless of how the
file is provided, providing the file to the secondary storage
computing device 106 involves providing a copy of the file to
the secondary storage computing device 106. Thus, the copy
of the file may remain on the primary storage device 104.

However, in some cases, providing the file to the secondary
storage computing device 106 involves providing the file
itself to the secondary storage computing device 106. Thus, in
some cases, a copy of the file may no longer exist on the
primary storage device 104 after the backup process is com-
plete. For example, during an archiving process, the file or a
copy of the file may be provided to the secondary storage
computing device 106 and may be removed from the primary
storage device 104. When the file is restored from secondary
storage, the file may be decrypted and stored on the primary
storage device 104 as described in more detail below. How-
ever, typically, at least a copy of the file will exist on both the

10

15

20

25

30

35

40

45

50

55

60

65

56

primary storage device 104 and a secondary storage device
108 during performance of and/or subsequent to completion
of'the process 600. In some cases, an archived copy of the file
may remain on the primary storage device 104.

The media agent 144 determines at decision block 606
whether the file is encrypted. This determination may be
based on one or more factors including the file itself and/or
metadata associated with the file. For example, the media
agent 144 may examine the file name, the data stored in the
file, a tag associated with the file, or any other information
that can be used to determine the encryption status of a file. In
some cases, the encryption status of the file is provided to the
media agent 144 by another system (e.g., the data agent 142 or
the storage manager 140).

In addition to determining whether the file is encrypted, the
media agent 144, at decision block 606, may in some cases
identify the system that encrypted the file. For example, the
media agent 144 may determine whether the file was
encrypted by the client computing device 102 (e.g., by the
encryption module 222), by another computing device
included within the information management system 100, or
by a computing system that is external to the information
management system 100. In some embodiments, the media
agent 144 may treat files that were encrypted by particular
computing systems, or files that were not encrypted by par-
ticular computer systems as unencrypted files with respect to
the process 600. In other words, in some cases, the media
agent 144 may re-encrypt, or encrypt a second time, or cause
files to be re-encrypted that are already encrypted based on
the computing system that initially encrypted the file.

Ifthe media agent 144 determines at the decision block 606
that the file is encrypted, the media agent 144 stores the file on
a secondary storage device 108 without performing an
encryption process at block 608. If multiple secondary stor-
age devices 108 exist, the media agent 144 may store the file
on the secondary storage device 108 specified by the storage
manager 140. Alternatively, the media agent 144 selects the
secondary storage device 108 to store the file based on one or
more storage device selection rules. These rules may be based
on the type of file, the source of the file, a user associated with
the file, a data agent associated with the file, or any other
information that can be used to determine the location or the
device to backup a file.

After identifying the secondary storage device 108 to store
the file, or secondary or backup copy of the file, the media
agent 144 may identify the secondary storage device 108 to
the storage manager 140. The storage manager 140 may asso-
ciate the identity of the secondary storage device 108 along
with the identity of the file in a repository (e.g., the manage-
ment database 146). In addition, or alternatively, the media
agent 144 may associate the identity of the secondary storage
device 108 along with the identity of the file in a repository
(e.g., the media agent database 152. Further, one or more of
the storage manager 140 and the media agent 144 may store at
the repository information relating to the encryption algo-
rithm used to encrypt the file. For example, one or both
systems may store the identity of the algorithm used to
encrypt the file, the identity of an algorithm capable of
decrypting the file, the identity of the system that encrypted
the file, and the like.

Ifthe media agent 144 determines at the decision block 606
that the file is not encrypted or, in some cases, should be
encrypted a second time, the media agent 144 encrypts the
file, or causes the file to be encrypted, at block 610. In some
cases, the media agent 144 may use the same encryption
algorithm regardless of the file to be encrypted. In other cases,
the media agent 144 may select an encryption algorithm

US 9,405,928 B2

57

based on the file (e.g., the name of the file, the size of the file,
the type of file, the owner of the file, etc.), the secondary
storage device 108 where the file is to be stored, the client
computing device 102 that provided the file, or any other
factor that can be used to determine the encryption algorithm
to use to encrypt the file. In yet other cases, the encryption
algorithm may be selected by the storage manager 140.

Atblock 612, the media agent 144 stores the encrypted file
on a secondary storage device 108. In some embodiments, the
block 612 can include one or more of the embodiments
described above with respect to the block 608. For example,
in some cases, the media agent 144 may select the secondary
storage device 108 based on one or more storage device
selection rules. As a second example, the media agent 144
may store with the file the identity of the encryption algorithm
used to encrypt the file. In addition, or alternatively, the media
agent 144 may store the identity of the encryption algorithm
used to encrypt the file along with the storage location of the
file in a table at the media agent database 152 and/or at the
storage manager 140. In some cases, the storage location of
the file may be stored at the client computing device 102.

In some embodiments, a copy of the file may be stored at
the secondary storage computing device 106 (e.g., as part of
a cache) as part of the block 608 and/or the block 612. The
copy of the file may be stored for a specific period of time or
until evicted, which, for example, may occur as part of a cache
maintenance process or to make room in the cache for addi-
tional files.

Advantageously, in certain embodiments, the process 600
may be used to perform a selective encryption backup pro-
cess. In some cases, encrypting only unencrypted files during
abackup process, time and computing resources can be saved
during the backup process. Alternatively, in some cases, the
process 600 can be used to encrypt all files regardless of
encryption status. By encrypting all files regardless of
encryption status during a backup process, the process 600
can be used to ensure consistent encryption across files of a
backup.

Example of a File Restoration Process

FIG. 7 illustrates an example embodiment of a file resto-
ration process 700. The process 700 can be implemented, at
least in part, by any system that can restore a file from a
secondary storage device 108 to a recipient system (e.g., the
client computing device 102). For example, the process 700,
in whole or in part, can be implemented by the storage man-
ager 140, a secondary storage computing device 106, and a
media agent 144, to name a few. Although any number of
systems, in whole or in part, can implement the process 700,
to simplify discussion, portions of the process 700 will be
described with reference to particular systems.

The process 700 begins at block 702 where, for example, a
storage manager 140 identifies a file to be restored from a
secondary storage device 108 by a media agent 144. The file
may be identified as part of a restore command received from
the storage manager 140 at a secondary storage computing
device 106. In some cases, the restore command is sent to a
particular secondary storage computing device 106 based on
the fileto be restored. The storage manager 140 can determine
which secondary storage computing device 106 to send the
restore command based on information stored at the storage
manager 140, such as a table of file locations. In some cases,
the process 700 may be performed as part of a system or
storage device restore process. In other cases, the process 700
may be initiated by a client computing device 102. For
example, the client computing device 102 may identify the

25

40

45

58

file to be restored at the block 702 or may send the restore
command to the secondary storage computing device 106
and/or media agent 144.

At block 704, the media agent 144 identifies a secondary
storage device 108 that includes a copy of the file identified at
the block 702. The secondary storage device 108 may be
identified based on the restore command that may be received
as part of the block 702. Alternatively, the secondary storage
device 108 may be identified based on the file to be restored
and/or based on a storage location table included as part of the
media agent database 152 that identifies the location of stored
files. The identified storage location may include the second-
ary storage device 108 from a set of secondary storage devices
and, in some cases, may include the location within the iden-
tified secondary storage device 108 that has the copy offile. In
some embodiments, the block 704 is optional. For example,
in some cases, the media agent 144 has access to a single
secondary storage device 108.

At block 706, the media agent 144 retrieves the file from
the secondary storage device 108. Further, the media agent
144 accesses metadata associated with the file at block 708.
The metadata may include the file name, the file extension, or
additional information stored with the file or at a table with an
entry for the file, such as a table at the media agent database
152.

Based, at least in part, on the metadata accessed at the block
708, the media agent 144 determines at decision block 710
whether the media agent 144 encrypted the file. In some
embodiments, the media agent 144 determines whether any
media agent included in a secondary storage device encrypted
the file. Further, in some cases the decision block 710 can
include determining whether any media agent associated with
an information management system 100 of an organization
encrypted the file. In other words, in some cases, the decision
block 710 can include determining whether the file was
encrypted as part of a storage operation associated with sec-
ondary storage or with primary storage, or whether the
encryption occurred at a system external to the information
management system 100 as may occur when a user or appli-
cation receives an encrypted file from a third-party user or
system.

Ifthe media agent 144 determines that it encrypted the file
at the decision block 710, the media agent 144 at block 712
decrypts the file retrieved at the block 706 using a decryption
algorithm associated with the media agent 144. In cases
where the media agent 144 may have used one of several
encryption algorithms to encrypt the file, the media agent 144
may identify the decryption algorithm based on the metadata
accessed at the block 708. Alternatively, the decryption algo-
rithm may be identified as part of the restore command or
included with the identification of the file to restore at the
block 702.

As previously described, in some cases the file may have
been encrypted by other systems within the secondary storage
subsystem 118, such as by other media agents 144 or second-
ary storage computing devices 106. In such cases, the media
agent 144 may determine the decryption algorithm based on
the device that encrypted the file or by communicating with
the device that encrypted the file, such as by accessing meta-
data stored at the device that encrypted the file.

Once the media agent 144 has decrypted the file, the sec-
ondary storage computing device 106 provides a recipient
system with access to the unencrypted file at block 714. The
recipient system may be the system that requested the file
(e.g., the client computing device 102), a mobile device in
communication with a computing system in the primary stor-
age subsystem 117 of the information management system

US 9,405,928 B2

59

100 (e.g., a client computing device 102 or a server (not
shown)), the storage manager 140, a system identified by the
storage manager 140, or any other system that may be autho-
rized to access the decrypted file. Further, providing access to
the decrypted file can include sending the decrypted file to the
recipient system, sending the file to another system (e.g., the
storage manager 140) to provide to the recipient system, or
enabling the recipient system to access the secondary storage
computing device 106 to obtain the decrypted file. Moreover,
in some cases, providing access to the decrypted file can
include providing one or more data agents 142 at the recipient
system with access to the decrypted file.

Ifthe media agent 144 determines that it did not encrypt the
file at the decision block 710, the media agent 144 at block
716 identifies the encryption algorithm used by the encrypt-
ing system to encrypt the file. The media agent 144 may
identify the encryption algorithm based on the file, metadata
associated with the file, information provided by the storage
manager 140, information provided by the recipient system,
information included in the restore command, or any other
data that can be used to identify the encryption algorithm. In
some cases, the encryption information may include a key,
such as a public key, for decrypting the file.

Atblock 718, the media agent 144 decrypts the file using a
decryption algorithm associated with the encryption algo-
rithm identified at the block 716. In some cases, the media
agent 144 may use a key provided and/or identified at the
block 716 to decrypt the file. After the file is decrypted, the
secondary storage computing device 106 provides a recipient
system with access to the unencrypted file at block 714 as
previously described.

In some embodiments, the blocks 716, 718, and 714 may
be optional. For example, if the media agent 144 determines
that it did not encrypt the file at the decision block 710, it may
send the encrypted file to the recipient system without
decrypting the file. In such cases, the recipient system (e.g.,
client computing device 102) may decrypt the file or provide
the file to another system for decryption.

Second Example of a File Restoration Process

FIG. 8 illustrates a second example embodiment of a file
restoration process 800. The process 800 can be imple-
mented, at least in part, by any system that can restore a file
from a secondary storage device 108 to a recipient system
(e.g., the client computing device 102). For example, the
process 800, in whole or in part, can be implemented by the
storage manager 140, a secondary storage computing device
106, and a media agent 144, to name a few. Although any
number of systems, in whole or in part, can implement the
process 800, to simplify discussion, portions of the process
800 will be described with reference to particular systems.

The process 800 begins at block 802 where, for example, a
storage manager 140 identifies a file to be restored from a
secondary storage device 108 by a media agent 144. The
media agent 144 identifies at block 804 a secondary storage
device 108 that includes a copy of the file to be restored. In
some embodiments, the blocks 802 and 804 can include one
or more of the embodiments described above with respect to
the blocks 702 and 704 respectively.

At block 806, the media agent 144 retrieves the file from
the secondary storage device 108 identified at the block 804.
In some embodiments, the block 806 can include one or more
of'the embodiments described above with respect to the block
706. Further, in some cases, the block 806 can include access-
ing metadata associated with the file. In such cases, the block
806 can include one or more of the embodiments described
above with respect to the block 708.

10

15

20

25

30

35

40

45

50

55

60

65

60

At decision block 808, the media agent 144 determines
whether the file is encrypted. The media agent 144 may make
this determination based, at least in part, on metadata associ-
ated with the file. Alternatively, or in addition, the media
agent 144 may determine whether the file is encrypted by
analyzing the file itself. In some embodiments, the decision
block 808 may be optional. For example, if every system
capable of storing a file at a secondary storage device 108 is
configured to encrypt each file before storing the file, then the
decision block 808 may be optional. In some embodiments,
the decision block 808 can include one or more of the embodi-
ments described above with respect to the decision block 710.

Ifthe media agent 144 determines at the decision block 808
that the file is not encrypted, the secondary storage computing
device 106 provides a recipient system with access to the file
at block 810. Once the recipient system has received the file,
the recipient system can present it to a user or provide an
application with access to the file via, for example, the inter-
face agent 220, the secure file access module 224, or a data
agent 142. In some embodiments, the block 810 can include
one or more of the embodiments described above with respect
to the block 714.

Ifthe media agent 144 determines at the decision block 808
that the file is encrypted, the media agent 144 determines
whether the file mimics an unencrypted file at decision block
812. The determination of the decision block 812 is based on
an unencrypted file of the same type as the decrypted version
of'the file retrieved at the block 806. The media agent 144 may
make the determination at the decision block 812 based, at
least in part, on metadata associated with the file and/or the
file itself. In some embodiments, the decision block 812 may
be optional. For example, if every system capable of storing a
file at a secondary storage device 108 is configured to con-
figure each encrypted file to mimic an unencrypted file before
storing the file, then the decision block 812 may be optional.

As previously described with respect to the block 408, an
encrypted file that mimics an unencrypted file can include a
reference to the encrypted file that shares some or all of the
display characteristics of a reference to an unencrypted file.
For example, the reference to the encrypted file may include
the same extension and/or the same icon as a reference to the
unencrypted file. In some cases, at least some of the metadata
associated with the encrypted file may be the same as the
metadata associated with an unencrypted copy of the file. For
example, the metadata associated with the encrypted file may
identify one or more applications that can access the file as if
it were unencrypted regardless of whether the one or more
applications can access the file in its encrypted form. Thus, in
some cases, a user accessing the metadata for the encrypted
file may, in some cases, not be able to identify the file as an
encrypted file. Further, in some instances, at least some appli-
cations may not be able to identify whether the file is
encrypted based on the metadata associated with the file.

Ifatthe decision block 812 the media agent 144 determines
that the file does not mimic an unencrypted file, the media
agent 144 modifies the encrypted file to mimic an unen-
crypted file at the block 814. Generally, the modification of
the block 814 does not include decrypting the file. Thus, the
modified file remains an encrypted file. Modifying the
encrypted file may include modifying one or more of the
factors described above with respect to the decision block 812
in determining whether the file mimics an unencrypted file.
For example, modifying the encrypted file can include chang-
ing the icon used to display a reference to the encrypted file to
the user to match the icon used to display a reference to the
unencrypted file to the user. As previously described, in some
cases, the icon may be annotated. Further, as a second

US 9,405,928 B2

61

example, modifying the encrypted file can include changing a
the file name and/or file extension of the encrypted file to
match the file name and/or file extension of an unencrypted
version of the file. In other cases, changing the file name may
include hiding a portion of the file name and/or file extension
so that it is not displayed to a user.

Once the encrypted file, or a reference to the encrypted file,
has been modified at the block 814, or if at the decision block
812 the media agent 144 determines that the file mimics an
unencrypted file, the secondary storage computing device
106 provides a recipient system with access to the file at block
810 as previously described. The recipient system (e.g., the
client computing device 102) using, for example, the decryp-
tion module 228 can decrypt the file for presentation to a user
or for provisioning to an application. In some cases, the
decryption of the file may occur upon the recipient system
obtaining access to the file. In other cases, the decryption of
the file may occur at a later time. In either case, the file may be
stored at the primary storage device 104 upon the recipient
system receiving access to the file.

In some cases, as has been described, the process 800 is a
multi-tier file restoration process. In such cases, a first portion
of the restoration process is performed by one or more sys-
tems within the secondary storage subsystem 118 of the infor-
mation management system 100 and a second portion of the
file restoration process being performed by one or more sys-
tems within the primary storage subsystem 117 of the infor-
mation management system 100.

Further, in some embodiments, the recipient system may
use the process 500 to provide a user and/or application with
access to the file. As previously described, in some embodi-
ments, the media agent 144 may decrypt the file at the block
814 and can provide the recipient system with access to the
decrypted file.

Second Example Client Computing Environment

FIG. 9 is a block diagram illustrating a second example of
a client computing environment 900 including a client com-
puting device 950 and a primary storage device 960. The
client computing device 950 and the primary storage device
960 can be included as part of the information management
system 100 previously described above with respect to FIGS.
1A-1E. Further, the client computing device 950 and the
primary storage device may be included in the primary stor-
age subsystem 117. Moreover, in certain embodiments, the
client computing device 950 can include one or more of the
embodiments described with respect to the client computing
device 102. Likewise, the primary storage device 960 can
include one or more of the embodiments described with
respect to the primary storage device 104.

The client computing device 950 may include a number of
systems and subsystems and be capable of executing a num-
ber of different types of software. For instance, the client
computing device 950 may include one or more applications
954, a file system 902, one or more data agents 952, an
authentication system 906, and an encryption rules repository
908. Further, at least one of the data agents 952 may be a file
system data agent 904. Although a single file system 902 and
a single file system data agent 904 are illustrated in FIG. 9, in
some embodiments, the client computing device 950 may
include multiple file systems and/or multiple file system data
agents. The file system 902 can include any type of file sys-
tem. For example, the file system 902 may include a
Microsoft Windows based file system or a Linux based file
system. Furthermore, in some embodiments, the file system
902 may include one or more of the embodiments previously
described with respect to the file system 202.

25

30

35

40

45

50

55

62

The applications 954 can include any type of application.
Further, the applications 954 can include one or more
embodiments previously described with respect to the appli-
cations 110. Some or all ofthe applications may be associated
with one or more data agents 952. As previously described, a
data agent may assist with the performance of information
management operations based on the type of data that is being
accessed and/or protected, at a client-specific and/or applica-
tion-specific level. Further, at least some of the data agents
952 may include one or more of the embodiments previously
described with respect to the data agents 142.

As with the client computing device 102, the client com-
puting device 950 may include an authentication system 906.
The authentication system 906 may include any system con-
figured to authenticate a user attempting to use the client
computing device 950 and/or attempting to access files stored
on the primary storage device 960, or store elsewhere. Fur-
ther, the authentication system 906 may include one or more
of the embodiments previously described with respect to the
authentication system 206.

The file system data agent 904 can include a data agent that
facilitates the file system 902 managing data processed or
organized by the file system 902. For example, as previously
described, the file system data agent may be involved in
handling data files and/or system files, and may facilitate
backing up the file system 902 of the client computing device
950. Backing up the file system 902 may include backing up
files stored at the primary storage device 960. In certain
embodiments, the file system data agent 904 can perform one
or more processes associated with the filter driver 204. Thus,
in some embodiments, the file system data agent 904 and/or
its subsystems can include one or more of the embodiments
described with respect to the filter driver 204 and/or it sub-
systems.

The primary storage device 960 can include any storage
device for storing primary data. For example, the primary
storage device 960 may be a hard drive, a solid state drive,
memory, flash, etc. Although illustrated as a separate system,
the primary storage device 960 may be included as part of the
client computing device 950. Further, the primary storage
device 960 may include one or more of the embodiments
described with respect to the primary storage device 104. As
previously described with respect to FIG. 2, the primary
storage device may include a number of repositories to facili-
tate storing and/or organizing data stored by the primary
storage device. For instance, the primary storage device 960
may include a repository 910 for storing unencrypted files
and a repository 912 for storing encrypted files. In some
embodiments, the primary storage device 960 may be orga-
nized into a lesser number or a greater number of repositories
and/or partitions.

Each data agent may include a number of systems or sub-
systems that facilitate the data agent processing data for a
corresponding application or system. For instance, the file
system data agent 904 may include an interface agent 920, an
encryption module 922, a secure file access module 924, an
encryption rules engine 926, a decryption module 928, and a
file monitor 930. In some embodiments, the file system data
agent 904 may include fewer or additional subsystems. For
instance, the encryption module 922 and the decryption mod-
ule 928 may be part of a single subsystem. As a second
example, the secure file access module 924 may be optional
because, for example, a separate system may handle secure
file access.

The interface agent 920 may be configured to control how
files, or referencesto files (e.g., file names, file icons, etc.), are
displayed to a user. Controlling how files are displayed can

US 9,405,928 B2

63

include controlling whether a file reference to an encrypted
files is displayed as a file reference to an unencrypted file or as
an annotated version of a reference to an unencrypted file. For
instance, a file icon for an encrypted file may be the same as
for an unencrypted file. Alternatively, the file icon may
include an asterisk to indicate that it represents an encrypted
file. In some embodiments, the interface agent 920 can
include one or more of the embodiments described with
respect to the interface agent 220.

In some cases, the file system data agent 904 may use an
encryption rules engine 926, which can access encryption
rules from the encryption rules repository 908, to determine
whether a file is to be encrypted. If the encryption rules engine
926 determines that a file should be encrypted, the encryption
module 922 can perform encryption of the file and, in some
cases, of the encryption key used to encrypt the file. The
encryption module 922 can include any encryption engine
that can encrypt a file using one or more encryption algo-
rithms. Further, the encryption module 922 can be used to
encrypt encryption keys. In some embodiments, the encryp-
tion rules engine 926 can include one or more of the embodi-
ments described with respect to the encryption rules engine
226. Similarly, in some cases, the encryption module 922 can
include one or more of the embodiments previously described
with respect to the encryption module 222.

To decrypt files, the file system data agent 904 can use the
decryption module 928, which can include any decryption
engine that can decrypt a file using one or more decryption
algorithms. Further, the decryption module 928 can be used to
decryptencrypted keys. In some cases, the decryption module
928 can include one or more of the embodiments previously
described with respect to the decryption module 228.

The secure file access module 924 can determine the
encryption status of a file and can manage the decryption and
presentation of encrypted files to users who are authorized to
access the file. Further, the secure file access module 924 can
manage access by applications and/or computing systems
attempting to access the file. In some embodiments, the
secure file access module 924 can include one or more of the
embodiments previously described with respect to the secure
file access module 224.

In some embodiments, the decision of whether to encrypt a
file at the primary storage device may be based on whether the
file has been modified. Further, the decision of whether to
decrypta file may be based on whether a file has been selected
for backup to a secondary storage device 106, or whether a
user or application desires to access the file. The file monitor
930 can include any system that can monitor activity with
respect to the file to facilitate determining whether the file
needs encrypting or decrypting. This determination may be
made based, at least in part, on rules stored at the encryption
rules repository 908 and/or commands received from a user,
application, and/or storage manager 140. In some embodi-
ments, the file monitor 930 can include one or more of the
embodiments described with respect to the file monitor 230.
Example User Key Encryption Process

FIG. 10A illustrates an example embodiment of a user key
encryption process 1000. The process 1000 can be imple-
mented, at least in part, by any system that can encrypt a
private key from an asymmetric key pair (e.g., a private/public
key pair). For example, the process 1000, in whole or in part,
can be implemented by the filter driver 204, the file system
data agent 904, the authentication system 906, the encryption
rules engine 926, and the encryption module 922, to name a
few. Although any number of systems, in whole or in part, can

10

15

20

25

30

35

40

45

50

55

60

65

64

implement the process 1000, to simplify discussion, portions
of the process 1000 will be described with reference to par-
ticular systems.

In some embodiments, the process 1000 may be combined
and/or integrated with a process for encrypting a file for
storage on a primary storage device, such as the process 1050,
which is described below with respect to FIG. 10B. In some
cases, the process 1000 may be performed at a time period
that is earlier than a time period during which the process
1050 may be performed. In other cases, the process 1000 and
the process 1050 may be performed together as part of a
single process. In some cases, the process 1000 may be per-
formed multiple times for a user. For example, a user or
system may have different asymmetric key pairs for use with
different sets of files.

Further, in some cases, the process 1050 may be performed
anumber of times as a file is encrypted and decrypted over the
lifetime of the file, while the process 1000 may be performed
once or some number of times fewer than the process 1050.
For instance, the process 1000 may be used to obtain an
encrypted copy of a user private key. Once the encrypted user
private key is obtained, it may be unnecessary to perform the
process 1000 again for that user. However, the process 1050
may be performed multiple times as a file may be encrypted
and decrypted a number of times.

The process 1000 begins at block 1002 where, for example,
the encryption module 922 obtains access to an asymmetric
key pair for each user who is authorized to access a set of files
at, or stored on, a primary storage 960. The set of files may
include any number of files including a single file. Determin-
ing the users who are authorized to access the set of files may
be based on metadata associated with the files and/or the user.
Alternatively, or in addition, determining the users who are
authorized to access the set of files may be based on identi-
fying the users who are authorized to access the client com-
puting device 950 or who have an account with the client
computing device 950. Thus, in some cases, the block 1002
may identify users who are authorized to access the client
computing device 950 and/or the primary storage 960 instead
of the users who are authorized to access the set of files.

In some cases, only a single user may be authorized to
access the set of files (e.g., the file author or owner for each of
the files, or for a directory including the files). In other cases,
anumber of users may be authorized to access the set of files.
The asymmetric key pair for each user may include a public
key and a private key and may be generated based on any type
of asymmetric key algorithm. For example, the asymmetric
key pair may be generated using RSA.

The asymmetric key pairs may be obtained by accessing a
key repository and/or by accessing the encryption rules
repository 908. Alternatively, the asymmetric key pairs may
be obtained from the storage manager 140. As yet another
alternative, the asymmetric key pairs may be generated by the
encryption module 922. An asymmetric key pair may be
associated with a user regardless of the computing device or
primary storage that the user accesses. In other cases, the
asymmetric key pair may be specific to a user and a comput-
ing device and/or primary storage accessed by the user.

At block 1004, the encryption module 922 obtains a pass-
phrase for each of the users. The passphrase may be a pass-
word, such as the password used by the user to login or to
access the client computing device 950, or a password used to
access a network used to communicate with systems of the
primary storage subsystem 117. In such cases, the passphrase
may be obtained by the authentication system 906. Often, the
passphrase is unique to the user. However, in some cases, the
passphrase may not be unique. In some embodiments, the

US 9,405,928 B2

65

passphrase of a user may be combined with information
unique to a user to ensure that the passphrase obtained at the
block 1004 is unique. For instance, the passphrase may
include a combination of a user’s password and a randomly,
or pseudo-randomly, generated number assigned to the user
that is unique to the user.

At block 1006, the encryption module 922 hashes each
passphrase. Hashing the passphrase may include performing
a hashing algorithm multiple times (e.g., 512 times, a thou-
sand times, a million times, etc.) with each subsequent per-
formance of the hashing algorithm using the result of the prior
performance of the hashing algorithm as the input to be
hashed. In some cases, the hashing may be performed a
threshold number of times. The threshold may be selected
based on a security level of the set of files. Advantageously, in
certain embodiments, by hashing the passphrase multiple
times, the probability that a malicious user is able to deter-
mine the passphrase based on the hashed passphrase is
reduced. The encryption module 922 may use any type of
cryptographic hash function. For example, the hash function
can be a SHA-512, MD6, or BLAKE-512 hash function. In
some cases, the encryption module 922 may pad the pass-
phrase with additional data to ensure the passphrase is of a
particular length.

At block 1008, the encryption module 922 encrypts, for
each user, one of the keys from the asymmetric key pair (e.g.,
the private key) associated with the user using the hashed
passphrase obtained at the block 1006. In some embodiments,
the blocks 1002-1008 are optional. For example, the data
encryption key used to encrypt the file may be secured using
only keys associated with the client computing device 950, as
described with respect to the blocks 1010-1014.

At block 1010, the encryption module 922 obtains access
to an asymmetric key pair for the client computing device
950. The asymmetric key pair may include a public key and a
private key and, as with the asymmetric key pairs of the block
1002, may be generated based on any type of asymmetric key
algorithm. For example, the asymmetric keys may be gener-
ated using an RS A algorithm. Further, as with the user asym-
metric key pairs, the asymmetric key pair of the client com-
puting device 950 may be obtained by accessing a key
repository and/or by accessing the encryption rules repository
908. Alternatively, the asymmetric key pair may be obtained
from the storage manager 140. Further, in some cases, the
asymmetric key pair may be generated by the encryption
module 922.

Atblock 1012, the file system data agent 904 provides one
of the keys from the asymmetric key pair (e.g., the private
key) associated with the client computing device 950
obtained at the block 1010 to the storage manager 140 for
encryption. In some embodiments, the block 1012 can
include providing an identity of the client computing system
950 to the storage manager 140.

Upon receiving the private key, the storage manager 140
can access a passphrase associated with the client computing
device 950. In some cases, the passphrase may be hashed, for
example, by the storage manager 140. Further, the passphrase
and/or the hashed version of the passphrase may be used to
encrypt a copy of the private key. Thus, in some cases, the
storage manager 140 may perform similar operations on the
private key, provided to the storage manager at block 1012, as
described above with respect to the blocks 1006 and 1008.

In some cases, the passphrase may be accessed from a
repository, which may be included with the storage manager
140 or may be separate, but accessible by the storage manager
140 over, for example, a network. Alternatively, or in addi-
tion, the storage manager 140 may generate the passphrase

25

30

40

45

55

66

forthe client computing device 950. Moreover, in some cases,
the passphrase is generated and used by computing systems
without a user accessing the passphrase. Thus, in such
embodiments, the passphrase may be automatically gener-
ated without user action. In some cases, the passphrase may
include symbols and/or data that may be unreadable by a user
or not alphanumeric. Further, in certain embodiments, the
storage manager 140 may identify the client computing
device 950 as available or accessible as opposed to lost or
stolen. In some cases, marking the client computing device
950 as available, or not lost, may include marking the pass-
phrase for the client computing device 950 as live or in-use.

At block 1014, the file system data agent 904 receives an
encrypted copy of the private key associated with the client
computing device 950 from the storage manager 140. In some
embodiments, the blocks 1010-1014 may be optional. For
example, in some cases, users may be associated with asym-
metric key pairs for encrypting files at the primary storage
960, but the client computing device 950 may, in some cases,
not be associated with its own asymmetric key pair.

At block 1016, the file system data agent 904 stores the
encrypted user private keys (obtained at the block 1008) and
the encrypted private key associated with the client comput-
ing device 960 (obtained at the block 1014). In cases where
the block 1008 or the block 1014 is optional, the block 1016
may store the encrypted user private keys or the encrypted
private key for the client computing device 960 respectively.
Storing the encrypted private keys may include storing the
encrypted private keys in one or more of the primary storage
960, the file system data agent 904, a registry of the client
computing device 950, the encryption rules repository 908, a
directory of the file system 902, a special purpose memory
device (not shown) of the client computing device 950, a
special purpose location within a memory device of the client
computing device 950, and the like. In some cases, the
encrypted private key may be embedded with a file that is
encrypted with a data encryption key, which is itself
encrypted by a public key corresponding to the encrypted
private key. The encrypted data encryption key may also be
embedded with the file.

At block 1018, the encryption module 922 discards the
private key, the passphrase, and the hashed passphrase for
each user. In addition, the block 1018 may include discarding
the private key for the client computing device 950. Discard-
ing the private key for the users and the client computing
device 950 may include discarding unencrypted private keys.
Thus, in certain embodiments, a private key may exist in its
unencrypted form during generation of the private key and
during decryption of a data encryption key that was encrypted
with a public key corresponding to the private key. In such
instances, the private key may only exist in an encrypted form
during time periods other than asymmetric key generation
and decryption of a data encryption key.

Although the operations of the process 1000 have been
described following a specific order, the process 1000 is not
limited as such. For instance, in some cases, operations may
be performed in a different order (e.g., the operations associ-
ated with the block 1010 may be performed prior to the
operations associated with the block 1002). Further, in some
cases, operations may be performed serially or substantially
in parallel. For instance, the blocks 1002 and 1010 may be
performed substantially in parallel.

Example Primary Storage File Encryption Process

FIG. 10B illustrates an example embodiment of a primary
storage encryption process 1050. The process 1050 can be
implemented, at least in part, by any system that can encrypt
afile for storage on a primary storage device (e.g., the primary

US 9,405,928 B2

67

storage device 104 or the primary storage device 960). Fur-
ther, the process 1050 can be performed by any system that
can encrypt the key used to encrypt the file with user and/or
system specific keys, which may be embedded with the
encrypted file. For example, the process 1050, in whole or in
part, can be implemented by the filter driver 204, the file
system data agent 904, the authentication system 906, the file
monitor 930, the encryption rules engine 926, the interface
agent 920, and the encryption module 922, to name a few.
Although any number of systems, in whole or in part, can
implement the process 1050, to simplify discussion, portions
of the process 1050 will be described with reference to par-
ticular systems.

The process 1050 begins at block 1052 where, for example,
the encryption rules engine 926 determines that a file is to be
encrypted for storage at a primary storage device 960. The
encryption rules engine 926 may determine that the file is to
be encrypted based, at least in part, on metadata associated
with the file (e.g., the file type, the file storage location).
Further, the determination may be based, at least in part, on
encryption rules, which may be stored at the encryption rules
repository 908 and which may be associated with the file
based on the file’s metadata. For example, all word process-
ing files with a particular extension may be associated with an
encryption rule that states that word processing files should be
encrypted at the primary storage device 960 each time the
files are closed. Alternatively, the encryption rules engine 926
may determine that a file is to be encrypted in response to an
action by a user or application. In some embodiments, the
block 1052 may occur in response to a command from a user,
application 954, or system (e.g., the storage manager 140).
Alternatively, the block 1052 may occur as part of an existing
process (e.g., during or at the end of a backup process to a
secondary storage computing device 106 or a secondary stor-
age device 108).

At block 1054, the encryption module 922 obtains a data
encryption key. This data encryption key can include any type
of symmetric key. For example, the symmetric key can be an
Advanced Encryption Standard (AES) key. Further, the key
may be based on a stream cipher (e.g., RC4, A5/1, etc.) or a
block cipher (e.g., Blowfish, DES, etc.). In some cases, the
data encryption key may be an asymmetric key. In some
cases, the encryption module 922 may obtain the key by
accessing a key repository and/or by accessing the encryption
rules repository 908. Alternatively, the encryption module
922 may obtain the key from the storage manager 140. In
some cases, the encryption module 922 may generate the data
encryption key. Generally, the data encryption key is unique
for a file. However, in some cases, the data encryption key
may be shared among a set of files. For example, the data
encryption key may be used for each file in a directory. In
certain embodiments, the data encryption key may be based
on the file. In other cases, the data encryption key may be
generated independently of the file.

Using the data encryption key, the encryption module 922
encrypts the file at block 1056. At block 1058, the encryption
module 922 accesses a public key for each user who is autho-
rized to access the file. The encryption module 922 may
determine the users who are authorized to access the file
based on metadata associated with the file and/or based on
users who are authorized to access the client computing
device 950 and/or the primary storage 960 or a storage loca-
tion thereon (e.g., a directory). Further, the encryption mod-
ule 922 may access the public keys by accessing one or more
of the storage locations previously described with respect to
the block 1016. Although the same types of storage locations
may be used to store the public keys and the encrypted private

10

15

20

25

30

35

40

45

50

55

60

65

68

keys, the storage used to store the public keys and the private
keys may or may not be the same storage. For example, the
encrypted private keys may be stored in a special encrypted
key store, while the corresponding public keys may be stored
in an unencrypted key manager (not shown) or a location of
the primary storage 960. As mentioned previously, a user may
be associated with multiple asymmetric key pairs. In such
cases, the block 1058 may include determining the public key
of the user to access based on the file to be encrypted and/or
the location of the file to be encrypted. Alternatively, or in
addition, the public key may be selected based on a desired
encryption level.

At block 1060, the encryption module 922 encrypts, for
each user who is authorized to access the file, a copy of the
data encryption key using the public key associated with the
user identified or accessed at the block 1058. In some embodi-
ments, the blocks 1058 and 1060 are optional. For example,
the data encryption key used to encrypt the file may be
secured using only keys associated with the client computing
device 950, as described with respect to the blocks 1062-
1064.

At block 1062, the encryption module 922 accesses a pub-
lic key associated with the client computing device 950. As
with the block 1058, the encryption module 922 may access
the public key associated with the client computing device
950 by accessing one or more of the storage locations previ-
ously described with respect to the block 1016. Further, as
with the user public keys, in some cases the client computing
device 950 may be associated with multiple asymmetric key
pairs. In such cases, the block 1062 may include determining
the public key of the client computing device 950 to access at
the block 1062 based on the file to be encrypted the location
of'the file to be encrypted and/or a desired encryption level.

At block 1064, the encryption module 922 encrypts a copy
of the data encryption key using the public key identified
and/or accessed at the block 1062. In some embodiments, the
blocks 1062 and 1064 are optional. For example, the data
encryption key used to encrypt the file may be secured using
only keys associated with users, as described with respect to
the blocks 1058-1060.

Atblock 1066, the encryption module 922 discards the data
encryption key. Discarding the data encryption key may
include discarding unencrypted copies of the data encryption
key from the client computing device 950.

The encryption module 922 embeds each encrypted data
encryption key with the encrypted file at block 1068. Embed-
ding the encrypted data encryption keys with the file may
include storing the encrypted data encryption keys with the
encrypted file in a single file. In some cases, the block 1068
may include the encrypted data encryption keys with the file
without embedding the keys with the file. For example, the
encrypted data encryption keys may be stored with the
encrypted file (e.g., in the same directory or an adjacent block
of memory). In other cases, the encrypted data encryption
keys may be stored in a separate location. In such cases, the
encrypted data encryption keys may be associated with the
encrypted file, for example, based on a relationship in a table
orusing any other mechanism to associate the encrypted data
encryption keys with the encrypted file.

At block 1070, the encryption module 922 embeds
encrypted private keys for each user and the client computing
device with the encrypted file. These encrypted private keys
correspond to the public keys accessed at blocks 1058 and
1062. Further, the private keys may be encrypted as previ-
ously described with respect to the process 1000. In some
embodiments, the block 1070 is optional and/or omitted. For
example, the encrypted private keys may be stored at the

US 9,405,928 B2

69

storage manager 140, at a secure store of the client computing
device 950, or in any other location as previously described
with respect to the block 1016.

Second Example File Backup Process

FIG. 11 illustrates a second example embodiment of a file
backup process 1100. The process 1100 can be implemented,
at least in part, by any system that can backup a file to a
secondary storage device 108. For example, the process 1100,
in whole or in part, can be implemented by the filter driver
204, the file system data agent 904, the secure file access
module 924, the decryption module 928, the file monitor 930,
and the storage manager 140, to name a few. Although any
number of systems, in whole or in part, can implement the
process 1100, to simplify discussion, portions of the process
1100 will be described with reference to particular systems.

As described below, the process 1100 includes decrypting
an encrypted file, which may be stored at a primary storage
device 960, and providing the decrypted file to a secondary
storage device 108, which may or may not re-encrypt the file
before storing the file. In certain embodiments, the encrypted
file is decrypted as part of the process 1100 to enable single
instancing. In other words, in some cases, by decrypting the
file before backing up the file, the secondary storage can keep
one copy of afile or data to which multiple users or computing
devices may share access. Further, decrypting the file before
backing it up enables deduplication at the secondary storage.
In some embodiments, the process 1100 may be performed
transparently and/or automatically when a user grants a
backup system permission to decrypt files using the user’s
private key. This permission may be granted at the time that
the file is protected or encrypted. Alternatively, the permis-
sion may be granted at a later time. In some cases, when the
user is granting a backup system permission to backup
encrypted files, the user may provide the backup system with
access to the user’s private key. Alternatively, in some cases,
the process 1100 may be performed without the user granting
permission to use the user’s private key. For example, the
process 1100 may be performed using the private key asso-
ciated with the client computing device 950. In some such
cases, the user may have previously indicated that a backup
system is authorized to access one or more of the encrypted
files.

The process 1100 begins at block 1102 where, for example,
the file monitor 930 identifies a file for backup to a secondary
storage device 108. The file may be identified for backup in
response to a user command or a command from a storage
manager 140. In other cases, the file may be identified for
backup as part of a scheduled backup process that may occur
once, or on a scheduled basis (e.g., nightly, weekly, monthly,
etc.). Further, in some cases, the file may be identified for
backup based on the storage location of the file in the primary
storage device 960. For example, files in a particular directory
may be identified or scheduled for backup.

At decision block 1104, the secure file access module 924
determines whether the file identified for backup is encrypted.
If'the secure file access module 924 determines that the file is
not encrypted, the file system data agent 904 provides the file
to the secondary storage device 108 at block 1106. Providing
the file to the secondary storage device 108 may include
providing the file to a media agent 144 of a secondary storage
computing device 106, which can then process the file for
backup storage at a secondary storage device 108. Processing
the file for backup can include the secondary storage comput-
ing device 106 encrypting the file.

If at decision block 1104 the secure file access module 924
determines that the file is encrypted, the decryption module
928 accesses an encrypted private key for the file that is

10

15

20

25

30

35

40

45

55

60

65

70

associated with the client computing device 950 at block
1108. Accessing the encrypted private key can include
extracting the encrypted private key from the encrypted file.
In other cases, the encrypted private key may be accessed
from a secure storage area of the primary storage device 960.

At block 1110, the file system data agent 904 provides the
encrypted private key to the storage manager 140. In some
embodiments, providing the encrypted private key to the stor-
age manager 140 includes providing an identity of the client
computing device 950 to the storage manager 140. Further, in
some cases, the block 1110 may include providing authenti-
cation information for a user who is accessing the client
computing device 950 to the storage manager 140.

The storage manager 140 can decrypt the encrypted private
key using a passphrase associated with the client computing
device 950. The storage manager 140 may identity the pass-
phrase based on the received encrypted private key and/or the
identity information received from the client computing
device 950. The storage manager 140 may hash the pass-
phrase associated with the client computing device 950 and
use the hashed passphrase to decrypt the encrypted private
key. In some cases, the passphrase may be stored in its hashed
form thereby making it unnecessary to hash the passphrase at
the time of decryption of the encrypted private key for the
client computing device 950.

In some embodiments, the storage manager 140 may deter-
mine whether the passphrase associated with the client com-
puting device 950 is active. If the passphrase is active, the
storage manager 140 can use the passphrase to decrypt the
encrypted private key. However, if the passphrase is marked
as inactive, lost, or stolen, then the storage manager 140 may
reject the request to decrypt the encrypted private key. Advan-
tageously, when a client computing device 950 has been
compromised, lost, stolen, or is no longer trusted, a user (e.g.,
an administrator) may indicate to the storage manager 140
that requests from the client computing device 950 should no
longer be accepted. In response, the storage manager 140 can
mark passphrases associated with the client computing
device 950 as inactive thereby preventing requests to access
encrypted files from the client computing device 950 from
being processed.

At block 1112, assuming the passphrase associated with
the client computing device 950 is active at the storage man-
ager 140, the file system data agent 904 receives the private
key from the storage manager 140. The private key received at
the block 1112 may be the decrypted version of the encrypted
private key provided to the storage manager 140 at the block
1110.

The decryption module 928 extracts an encrypted data
encryption key associated with the client computing device
950 from the file at block 1114. In some cases, the encrypted
data encryption key is accessed from a storage location at the
client computing device 950 and/or the primary storage
device 960. The encrypted data encryption key may be iden-
tified by accessing a data structure, such as a table, the asso-
ciates the encrypted data encryption keys with the corre-
sponding files. Further the data structure may associate each
of the encrypted data encryption keys for a file with corre-
sponding systems and/or users.

At block 1116, the decryption module 928 decrypts the
encrypted data encryption key using the private key obtained
at the block 1112. The decryption module 928 then decrypts
the file using the decrypted data encryption key at block 1118.
The decrypted file is provided to the secondary storage device
108, or to the secondary storage computing device 106, at
block 1120. In some embodiments, the block 1120 may also
include deleting or discarding the decrypted data encryption

US 9,405,928 B2

71

key and/or private key. Further, the block 1120 may include
deleting the decrypted file after it is provided to the secondary
storage device 108.

In some embodiments, the process 1100 may include using
a private key associated with a user instead of the private key
associated with the client computing device 950. In such
embodiments, block 1108 may include accessing an
encrypted private key associated with a user who, for
example, initiated the file backup process. Further, the blocks
1110 and 1112 may include accessing a passphrase from the
user by, for example, requesting the user provide the pass-
phrase and/or accessing the passphrase from the authentica-
tion system 906, which may have obtained the passphrase
during an authentication process of the user. The passphrase
may then be hashed by the decryption module 928 and used to
decrypt the user’s encrypted private key. At block 1114, the
decryption module 928 can extract an encrypted data encryp-
tion associated with the user. This encrypted data encryption
key may be decrypted at the block 1116 using the private key
of the user.

The process 1100, in some embodiments, may be used for
accessing the file by a user, an application, or system other
than the secondary storage device 108. In such embodiments,
the decrypted file is presented to the requestor of the file at the
block 1120. For instance, the file may be presented to a user
who is authorized to access the file. The user’s authorization
may be determined based, at least in part, on whether a data
encryption key that was encrypted with a key associated with
the user exists.

Example Client Passphrase Replacement Process

FIG. 12 illustrates an example embodiment of a client
passphrase replacement process 1200. The process 1200 can
be implemented, at least in part, by any system that can access
an encrypted private key associated with or assigned to a
client computing device and can replace the passphrase used
to encrypt the encrypted private key. For example, the process
1200, in whole or in part, can be implemented by the filter
driver 204, the file system data agent 904, the secure file
access module 924, the encryption module 922, the decryp-
tion module 928, the file monitor 930, and the storage man-
ager 140, to name a few. Although any number of systems, in
whole or in part, can implement the process 1200, to simplify
discussion, portions of the process 1200 will be described
with reference to particular systems.

The process 1200 may be performed in response to a
detected integrity breach with respect to a client computing
device 950 or storage manager 140. This integrity breach may
include a detected unauthorized access or an attempted unau-
thorized access of the client computing device 950 or storage
manager 140. The unauthorized access may include an
attempt, successful or otherwise, to access or decrypt a pri-
vate key associated with the client computing device 950.
Alternatively, or in addition, the process 1200 may be per-
formed at a scheduled time to update or replace system pass-
phrases for one or more client computing devices 950. Fur-
ther, as will be described in more detail below, the process
1200 may be used to replace user passphrases.

The process 1200 begins at block 1202 where, for example,
the file system data agent 904 accesses an encrypted private
key associated with a client computing device 950. This
encrypted private key may be specific to a file or set of files
stored at the primary storage device 960 or accessible by the
client computing device 950. Alternatively, the encrypted
private key may be specific to the client computing device 950
and may be used for any file that the client computing device
950 can access.

10

15

20

25

30

35

40

45

50

55

60

65

72

At block 1204, the file system data agent 904 provides the
encrypted private key to the storage manager 140. In some
cases, the block 1204 includes providing an identity of the
client computing device 950 to the storage manager 140. The
storage manager 140 can decrypt the encrypted private key
using a passphrase or hashed passphrase associated with the
client computing device 950. The storage manager can then
access a new passphrase, or can generate a new passphrase,
for the client computing device 950. This new passphrase can
be hashed and used to encrypt the decrypted private key to
obtain an updated encrypted private key that is encrypted
based on the new passphrase for the client computing device
950. The new passphrase may be assigned to the client com-
puting device 950 and may be identified as active at the
storage manager 140. The previous passphrase that was
assigned to the client computing device 950 can be identified
as inactive thereby preventing decryption of versions of the
private key that were encrypted using the previous passphrase
of the client computing device 950. In some embodiments,
the block 1204 can include one or more embodiments
described above with respect to the block 1110.

The file system data agent 904 receives a new encrypted
private key from the storage manager 140 at block 1206. This
new encrypted private key can be the updated encrypted pri-
vate key created by the storage manager 140 and assigned to
the client computing device 950. Using the process 1200, the
passphrase of the client computing device 950 may be
updated while maintaining the same asymmetric key pair for
the client computing device 950. An example of an embodi-
ment for updating the asymmetric key pair for the client
computing device 950 will be described below with respect to
FIG. 13.

As previously mentioned, a modified version of the process
1200 may be used to update a passphrase for a user. In such
embodiments, the file system data agent 904 accesses an
encrypted key associated with a user at the block 1202. In
some cases, the file system data agent 904 may still provide
the encrypted private key to the storage manager 140, which
may obtain the user’s passphrase from the user and decrypt
the encrypted private key. In such cases, the storage manager
140 may also obtain a new passphrase from the user, or
generate a new passphrase for the user, and encrypt the private
key with the new passphrase, or a hashed version thereof, and
provide the new encrypted private key to the client computing
device 950.

However, in other embodiments, Instead of providing the
encrypted private key to the storage manger 140, the file
system data agent 904 can obtain the user’s passphrase. The
user may be prompted for the passphrase or the passphrase
may be obtain from the authentication system 906, which
may have obtained the passphrase when the user was authen-
ticated by the authentication system 906 during, for example,
a login process. The decryption module 928 may hash the
passphrase and use the hashed passphrase to decrypt the
encrypted private encryption key. The encryption module 922
can obtain a new passphrase for the user by, for example,
prompting the user for a new passphrase. The encryption
module 922 can then hash the new passphrase and use the
hashed version of the new passphrase to encrypt the private
key. Any unencrypted copies of the private key can be dis-
carded. Further, the passphrase provided by the user may also
be discarded.

In some embodiments, instead of decrypting an encrypted
private key and using a new passphrase to re-encrypt the
private key, a new asymmetric key pair may be generated for
auser or a client computing device 950. In such cases, the old
private key may be used to obtain access to the data encryp-

US 9,405,928 B2

73

tion key. The data encryption key can then be encrypted using
the new private key. The encrypted copy of the data encryp-
tion key can then be embedded or stored with the one or more
files for which the data encryption key corresponds. In some
implementations, instead of using the old private key to
obtain access to the data encryption key, another private key
may be used. For example, if the passphrase is being replaced
for a user, the private key of the client computing device 950
may be used to obtain access to the data encryption key.

In some embodiments, the data encryption key encrypted
with the old public key corresponding to the old private key
may be discarded. In other cases, it may be left with the file,
or at its storage location.

Example of a Client Key Rotation Process

FIG. 13 illustrates an example embodiment of a client key
rotation and/or replacement process 1300. The process 1300
can be implemented, at least in part, by any system that can
access an encrypted private key associated with or assigned to
aclient computing device and can replace the private key with
a new private key for the client computing device as part of a
process for replacing an asymmetric key pair associated with
the client computing device. For example, the process 1300,
in whole or in part, can be implemented by the filter driver
204, the file system data agent 904, the secure file access
module 924, the encryption module 922, the decryption mod-
ule 928, the file monitor 930, and the storage manager 140, to
name a few. Although any number of systems, in whole or in
part, can implement the process 1300, to simplify discussion,
portions of the process 1300 will be described with reference
to particular systems.

As with the process 1200, the process 1300 may be per-
formed in response to a detected integrity breach with respect
to aclient computing device 950 or storage manager 140. This
integrity breach may include a detected unauthorized access
or an attempted unauthorized access of the client computing
device 950 or storage manager 140. The unauthorized access
may include an attempt, successful or otherwise, to access or
decrypt a private key associated with the client computing
device 950. Alternatively, or in addition, the process 1300
may be performed at a scheduled time to update or replace
system passphrases for one or more client computing devices
950. Further, as will be described in more detail below, the
process 1300 may be used to replace asymmetric keys asso-
ciated with a user. Moreover, in some cases, the process 1300
can be performed in combination with the process 1200 to
replace both an asymmetric key pair and a passphrase for a
client computing device 950 and/or a user.

The process 1300 begins at block 1302 where, for example,
the file system data agent 904 accesses an encrypted private
key associated with a client computing device 950 from a file.
In some embodiments, the block 1302 may include one or
more embodiments described above with respect to the block
1202.

Atblock 1304, the file system data agent 904 obtains a copy
of the data encryption key for the file. Obtaining the copy of
the data encryption key may include decrypting a copy of an
encrypted private key associated with the client computing
device 950 and using the decrypted private key to decrypt an
encrypted copy of the data encryption key as was previously
described with respect to the blocks 1108-1116.

At block 1306, the file system data agent 904 discards the
encrypted private key associated with the client computing
device 950. Discarding the private key of the client computing
device 950 can include discarding copies of the client com-
puting device’s 950 corresponding public key. In some
embodiments, the block 1306 may be optional. For example,
in some cases, the passphrase used to encrypt the private key

10

15

20

25

30

40

45

60

74

may be classified as inactive at the storage manager 140
thereby causing the storage manager 140 to reject attempts to
decrypt the encrypted private key.

The file system data agent 904 obtains a new asymmetric
key pair for the client computing device 950 at the block
1308. As previously mentioned, the asymmetric key pairs can
be obtained using an RSA scheme, or any other type of
asymmetric encryption scheme. Further, in some cases, the
encryption module 922 can generate the asymmetric encryp-
tion keys.

At block 1310, the encryption module 922 encrypts the
copy of the data encryption key using one of the keys (e.g., a
public key) from the new asymmetric key pair. The encryp-
tion module 922, at block 1312, stores the encrypted data
encryption key with the file by, for example, embedding the
encrypted data encryption key into the file or by storing the
encrypted data encryption key in an adjacent memory block.
Alternatively, the encrypted data encryption key may be
stored in a designated storage area of the client computing
device 950 for storing encryption keys, such as a hardware
key manager or in a protected area of memory. As another
alternative, the encrypted data encryption key may be stored
in a designated area of the primary storage device 960.

At block 1314, the file system data agent 904 provides the
second key (e.g., a private key) from the new asymmetric key
pair to the storage manager 140. The storage manager 140 can
encrypt the private key using a passphrase or a hashed pass-
phrase associated with the client computing device 950. In
some embodiments, the storage manager 140 may select a
new passphrase for the client computing device 950 and use
the new passphrase, or a hashed version thereof, to encrypt
the private key. Thus, in some cases, the process 1200 may be
performed in combination with the process 1300. Further, in
certain embodiments, the block 1314 can include one or more
of'the embodiments described above with respect to the block
1204.

At block 1316, the file system data agent 904 receives the
new encrypted private key from the storage manager 140. In
some embodiments, the block 1316 can include one or more
of'the embodiments described above with respect to the block
1206.

As previously mentioned, the process 1300, or a modified
version thereof, may be used to replace an asymmetric key
pair for a user. In such embodiments, the encrypted private
key obtained at the block 1302 is the encrypted private key for
the user whose encryption keys are being replaced. Further,
obtaining the copy of the data encryption key may include
obtaining the user’s passphrase by, for example, prompting
the user for the passphrase or obtaining the passphrase from
the authentication system 906 as previously described. The
passphrase may then be hashed and the hashed passphrase
can be used to decrypt the encrypted private key. The
decrypted private key can then be used to decrypt the
encrypted data encryption key associated with the user for the
file to obtain the data encryption key. As with the process for
replacing the asymmetric key pair of the client computing
device 950, the private key of the user may be discarded and
anew asymmetric key pair for the user may be obtained. One
of the asymmetric keys (e.g., the public key) can be used to
encrypt the copy of the data encryptionkey at block 1310. The
encrypted data encryption key can be stored with the file at
block 1312. The second asymmetric key (e.g., the private key)
can be encrypted using a passphrase, or hashed passphrase,
associated with the user. This may by the same passphrase for
the user obtained during the process of decrypting the copy of
the data encryption key at the block 1304. Alternatively, the

US 9,405,928 B2

75

file system data agent 904 may obtain a new passphrase for
the user by, for example, prompting the user for a new pass-
phrase.

In some embodiments, the process 1300, or a modified
version thereof, may be used to provide additional users or
client computing devices with access to an encrypted file. In
such embodiments, the block 1302 and 1304 may be per-
formed to obtain access to a data encryption key. However,
rather than discarding an encrypted private key or obtaining a
new asymmetric key pair for the client computing device 950
or a user that is associated with an existing copy of an
encrypted data encryption key for the file, an asymmetric key
pair is obtained or generated for a new client computing
device and/or user at the block 1308. The blocks 1310-1316
may then be performed using the new asymmetric key pair for
the new client computing device. Alternatively, the process
described in the previous paragraph with respect to the blocks
1310-1316 may be used to encrypt a copy of the data encryp-
tion key and the private key for the new user.

To remove authorization to access a file for a client com-
puting device and/or for a user, the file system data agent 904
can obtain or extract the encrypted copy of the data encryp-
tion key for the file corresponding to the client computing
device or user whose authorization to access the file is being
removed. This encryption copy of the data encryption key can
then be deleted or discarded thereby preventing the client
computing device or user from being able to obtain a
decrypted version of the data encryption key for the file.

In certain embodiments, a new asymmetric key pair may be
selected for the client computing device 950 using, for
example, the process associated with the block 1308. How-
ever, a data key for a file may not be encrypted with the new
private key of the new asymmetric key pair until the file is
accessed by a user, or a system in the performance of an
operation, such as a backup process. For example, a new
asymmetric key pair may be selected for the client computing
device 950 at a time X. At some later time Y, a file may be
accessed using an old private key of the client computing
device 950 associated with an older asymmetric key pair.
After the data encryption key is obtained for the file, it may be
reencrypted using the new public key of the new asymmetric
key pair. The new private key can then be provided to the
storage manger 140 for encryption using the client computing
device’s passphrase or hashed passphrase.

It is possible to rotate the asymmetric keys at some time
subsequent to the replacement of the asymmetric key pairs
because, for example, the storage manager 140 can maintain
the passphrase of the client computing device 950, even if the
passphrase has been updated. Thus, for example, if a new
asymmetric key pair is assigned to the client computing
device 950 and a new passphrase is generated for the client
computing device 950 to encrypt or obfuscate the private key
of the new asymmetric key pair, the old passphrase may still
be used to access the old private key at the time that a file is
first accessed subsequent to the client computing device 950
being associated with a new asymmetric key pair. Once the
data encryption key is extracted using the old asymmetric key
pair, it can by protected using the new asymmetric key pair. In
some cases, if there are no other files with data encryption
keys that were secured using the old asymmetric key pair, the
old asymmetric key pair can then be discarded.

Alternatively, in some embodiments, the data encryption
keys for a set of files may be reencrypted using the new
asymmetric key pair for the client computing device 950 as
part of a background and/or low-priority process. For
instance, when the client computing device 950 is idle, or not
being accessed by a user, files stored on the primary storage

10

15

20

25

30

35

40

45

50

55

60

65

76

device 960 may be accessed to rotate the client computing
device’s 950 asymmetric key pair using, for example the
process 1300.

Third Example Client Computing Environment

FIG. 14 is a block diagram illustrating a third example of a
client computing environment 1400 including a client com-
puting device 1450 and a primary storage device 960. The
client computing device 1450 can include at least some of the
same systems previously described with respect to FIG. 9, as
indicated by shared reference numerals. However, in addition
to the features and embodiments described with respect to
FIG. 9, the file system data agent 904 of the client computing
device 1450 can include a content analyzer 1402 and an
encryption rules generator 1404.

The content analyzer 1402 can include any system that can
analyze a file to determine whether the file includes sensitive
information, which can include any information that is to be
designated for encryption. Analyzing the file can include
performing one or more data mining and/or natural language
processing algorithms with respect to the file. Further, ana-
lyzing the file can include breaking up or dividing the file into
a number of constituent portions. These constituent portions
can be referred to as tokens or data tokens and represent data
within the file. The data tokens are described in more detail
below with respect to FIG. 15.

The sensitive information can include information or data
that is to be stored in an encrypted format. Determining
whether the file includes sensitive information may include
determining whether one or more of the data tokens extracted
by the content analyzer 1402 include sensitive information.
The determination of whether a data token includes sensitive
information may include determining the type of data
included in the data token and comparing the determined type
of'datato alist of data types that are identified as sensitive. For
example, if the data token includes a social security number
(SSN), and SSN is a type of data identified as sensitive, then
the data token may be identified as including sensitive infor-
mation. Consequently, the file from which the data token was
extracted may be identified as sensitive.

In addition to analyzing a file to determine whether it
includes sensitive information, the content analyzer 1402
may be used in conjunction with an encryption rules genera-
tor 1404 to automatically generate a set of encryption rules for
determining whether to encrypt a file. In such embodiments,
the content analyzer 1402 may analyze a number of files,
which may be identified for training the system, and deter-
mine data tokens for each of these training files. The encryp-
tion rules generator 1404 may then determine a set of encryp-
tion rules based on the data tokens for the training files for
identifying files that include sensitive information.

The encryption rules may identify a type of data token or a
combination of types of data tokens. When a file under analy-
sis includes data tokens of the type or types included in the
encryption rule, the file may be considered as a file to be
encrypted. Further, the encryption rule may also include con-
text information indicating when to encrypt a file as well as
the type of encryption algorithms to use. Further, the encryp-
tion rule may identify which encryption keys to use to encrypt
the files that satisfy the encryption rule.

In some cases, the encryption rule generation process may
include comparing the data tokens to an identified set of
sensitive terms or types of data. Alternatively, or in addition,
the encryption rules generator may look for data tokens that
are shared by a number or percentage of training files to
determine encryption rules for identifying files that include
sensitive information. This determination may be made

US 9,405,928 B2

77

regardless of whether the shared data tokens are included in a
list of sensitive information or data types.

Using the generated encryption rules, which may be stored
at an encryption rules repository (e.g., the encryption rules
repository 908), the encryption rules engine 926 can deter-
mine whether a file includes sensitive information. In some
cases, the determination is a probability made with a degree of
certainty based at least in part on matching data tokens
extracted by the content analyzer 1402 with the set of encryp-
tion rules generated by the encryption rules generator 1404.
Example Encryption Rules Generation Process

FIG. 15 illustrates an example embodiment of an encryp-
tion rules generation process 1500. The process 1500 can be
implemented, at least in part, by any system that can auto-
matically generate a set of rules for determining whether a file
is to be encrypted based on the content of the file or the data
included in the file. For example, the process 1500, in whole
or in part, can be implemented by the file system data agent
904, the content analyzer 1402, the encryption rules generator
1404, and the encryption module 922, to name a few.
Although any number of systems, in whole or in part, can
implement the process 1500, to simplify discussion, portions
of the process 1500 will be described with reference to par-
ticular systems.

The process 1500 begins at block 1502 where, for example,
the content analyzer 1402 receives the identity of a set of files
that include sensitive information. The files may be identified
by a user (e.g., an administrator) or may be located in a
particular directory or location for storing files that include
sensitive information. In some cases, the files may be files
generated by an entity’s workflow over a period of time. In
other cases, the files may be files specifically generated for
training or encryption rules generation. In either set of cases,
the set of files may be termed “training files.”

As previously stated, the sensitive information can include
information or data that is to be stored in an encrypted format.
The sensitive information can include any type of information
that an entity has determined should be kept in an encrypted
format. In some cases, the entity may include a business or
other organization that generated or works with the data. In
other cases, the entity may refer to a third-party entity (e.g., a
partner entity of the entity, a government organization, or
customers) that requires the data to be stored in an encrypted
format. In some cases, a file in its entirety may be considered
to store sensitive information, but in other cases, only a por-
tion of the file may include sensitive information.

The set of files received at the block 1502 may be associ-
ated with a specific computing system, server system, or
client system for the purposes of generating encryption rules.
In such cases, encryption rules generated using the process
1500 may be specific to the particular computing system.
However, in other cases, the set of files received at the block
1502 may be used to generate encryption rules for a set of
computing systems, which may be a subset of computing
systems of an entity or may include an entity’s entire com-
puting infrastructure.

Atblock 1504, the content analyzer 1402 uses a number of
natural language processing algorithms to determine a set of
data tokens associated with each file received at the block
1502. These natural language processing algorithms can
include performing a number of tasks or processes relating to
natural language processing including, for example, auto-
matic summarization, coreference resolution, discourse
analysis, machine translation, morphological segmentation,
named entity recognition, natural language understanding,
optical character recognition, part-of-speech tagging, pars-
ing, relationship extraction, sentence boundary disambigua-

10

15

20

25

30

35

40

45

50

55

60

65

78

tion, sentiment analysis, topic segmentation and recognition,
word segmentation, word sense disambiguation, singular
value decomposition, latent semantic analysis, latent
Dirichlet allocation, pachinko allocation, and probabilistic
latent semantic analysis.

In some embodiments, the natural language processing
algorithms used may vary based on the content being ana-
lyzed. For example, a file system data file, which may lack
context information associated with users, may be processed
using one set of natural language processing tools. But an
email, which has context information relating to the sender
and the recipient(s) of the email may be processed using
different natural language processing tools that may be able to
use the context information to help process the file. For
instance, if the sender and recipient(s) work in the accounting
department, numbers may be treated differently than if the
sender and recipient(s) are a user and the user’s family mem-
bers. In the first case, numbers included in the email may be
assumed to be financial data for an employer, but in a second
case, the numbers may be treated differently (e.g., quantities
for a shopping list).

Further, the block 1504 may include dividing each file into
a number of portions. Each of these portions can correspond
to a data token. The portions or data tokens may be of varying
sizes depending on the information included in the file. For
example, in some cases, a portion of the file may be a word, a
number of words, a sentence, a paragraph, a page, a sequence
of characters or numbers (e.g., a Social Security number, a
credit card number, a confirmation code, etc.), etc. In some
cases, the content analyzer 1402 may use stop words to facili-
tate defining the portion of the file. Further, the content ana-
lyzer 1402 may use tonal words to determine the context of a
data token.

Although the data tokens may include the actual data in the
file, often the data token corresponds to the type of data in the
portion of the file. For example, the data token may be SSN,
salary, design drawing, and the like rather than the number
representative of the SSN or salary, or the drawing represen-
tative of the design drawing.

However, in some cases, the data token will include the
data or may include the data and the type of data. In some such
cases, the data token includes some data, and a heuristic
algorithm is used to determine with a particular probability
the type of data. For instance, the algorithm may determine
that a portion of a file with a series of alphanumeric characters
and then a set of 9 numeric digits represents a name followed
by a social security number. In some cases, the heuristic
algorithm may use additional context information to increase
or decrease the probability that the data token represents a
name followed by a SSN. For example, if the file is located in
a particular directory, or is created and/or accessed by par-
ticular users, it may be more likely that the data token is a
name followed by a SSN than if the file is located elsewhere
or accessed by a different set of users.

At block 1506, the encryption rules generator 1404 uses a
number of heuristic algorithms to determine a set of rules for
identifying files with sensitive information. The determina-
tion may be based on the set of data tokens associated with
each file that is determined at the block 1504. The heuristic
algorithms can include performing pattern recognition to
determine a pattern associated with a particular type of file.
For instance, the block 1506 can identify a pattern in the data
tokens determined at the block 1504 and associate the pattern
with a particular type of file specified by a user. For instance,
if the user provides a set of files that are identified as financial
files, the encryption rules generator 1404 can associate the
determined pattern with financial files, which may be identi-

US 9,405,928 B2

79

fied as files to be encrypted or protected. For example, if each
of'the set of files identified as financial files include a number
of line items ending with a currency denomination and a
number, the encryption rules generator 1404 may determine
that files with data tokens that include line items, currency
denominations, and a number following the currency
denomination are likely to be financial files that should be
protected. In other words, when a file is identified that
includes the same or a similar pattern of data tokens as the
financial files, the file can be classified as a financial file
and/or a file to be protected.

In some cases, the heuristic algorithm may include gener-
ating a prospective encryption rule based on the set of data
tokens for each file. The heuristic algorithm may further
include performing the prospective encryption rule with
respect to the set of files identified at the block 1502.

The heuristic algorithms may be applied separately to the
set of data tokens generated for each file. A prospective
encryption rule can be generated based on each file. In some
cases, the prospective encryption rules for the set of files are
aggregated or combined to generate some number of prospec-
tive encryption rules less than the initial number of encryption
rules. The prospective encryption rules may be combined
based on the percentage of overlapping data tokens between
files or in each encryption rule. For instance, each prospective
encryption rule that includes 75% of the same data tokens, or
type of data tokens, may be combined to create a new pro-
spective encryption rule. In some cases, the prospective
encryption rules may include matching not just data tokens,
but the particular sequence or patterns of data tokens. More-
over, the matching of data tokens may refer to the matching of
types of data tokens instead of or in addition to the content of
the data token. The types of data tokens may refer to the data
type, such as character, number, word, image, or the type of
data, such as addresses, social security numbers, monetary
values, credit card numbers, design drawings, etc.

Alternatively, the heuristic algorithms may be applied to a
cumulative set of data tokens generated for the set of files. In
such cases, a single prospective encryption rule may be gen-
erated for a set of training files.

Encryption rules generator 1404 may determine the per-
centage or number of files that are identified for encryption
using the prospective encryption rule. If the number or per-
centage of files identified for encryption satisfies or exceeds a
threshold, the process 1500 may continue processing the
prospective encryption rule as will be described in more detail
below. However, if the number or percentage of files identi-
fied for encryption does not satisfy or exceed the threshold,
the prospective encryption rule may be iteratively modified
until the number or percentage of files identified for encryp-
tion satisfies the threshold. The threshold may be determined
by a user (e.g., an administrator) and may be adjusted over
time by the user and/or based on the number of false positives
or negatives identified by using the generated encryption
rules.

In some embodiments, the data tokens determined at the
block 1504 may be filtered to remove data tokens of a type
that are identified as not sensitive. In some cases, the filtering
may be done automatically by comparing the identified types
of data tokens with a “white list” of data token types that are
not sensitive (e.g., employee work phone numbers). Alterna-
tively, or in addition, a user (e.g., an administrator) may
manually filter out data tokens that are of a non-sensitive type.

The prospective encryption rules determined at the block
1506 may be presented to a user (e.g., an administrator) for
confirmation at the block 1508. The block 1508 may include
receiving confirmation of the prospective encryption rules

10

15

20

25

30

35

40

45

50

55

60

65

80

and/or modifications to the prospective encryption rules. In
some implementations, the block 1508 may be omitted or
optional.

At block 1510, the prospective encryption rules that do
satisfy the threshold and/or that are approved by the user are
stored at an encryption rules repository 908. In some cases,
the block 1510 may include associating the prospective
encryption rules for identifying files to be encrypted with
particular encryption algorithms for encrypting the files iden-
tified by the application of the encryption rule.

Optionally, at block 1512, the encryption rules generator
1404 may associate a set of context rules with each encryption
rule. In some cases the context rules may be specified by a
user and may include, for example, a geographic and/or net-
work location of a computing device, a type of a computing
device, an identity of a user accessing or attempting to access
afile that may be identified by performing the encryption rule,
ora department associated with the user within an entity (e.g.,
the accounting department). For instance, in some cases, afile
may be identified for encryption by the encryption rule when
a device accessing the file is determined to be external to a
building associated with an entity. However, continuing the
example, the encryption rule may not identify the file for
encryption when the device accessing the file is determined to
be internal to the building associated with the entity.

In some cases, the set of context rules may also include
context of use conditions. For example, a file that is being
accessed and/or modified by a user may not be identified by a
particular encryption rule for encryption. However, if the file
is accessed for copying to another device or for backup, the
encryption rule may identify the file for encryption.

It should be understood that the process 1500 may be
repeated for different sets of files. For example, a first set of
files may be provided at the block 1502 for generating a first
encryption rule and a second set of files may be provided for
generating a second encryption rule. Further, in some
embodiments, the block 1502 may include receiving a first set
of files identified as including sensitive information and a
second set of files identified as not including sensitive infor-
mation. The heuristic algorithms applied at the block 1506
may then be modified to generate prospective encryption
rules that identify a first threshold percentage or number of
files with sensitive information for encryption and less than a
second threshold or number of files without sensitive infor-
mation for encryption.

As stated above, generally each portion of the file corre-
sponds to a single data token. Further, each data token typi-
cally corresponds to a unique portion of the file. However, in
some cases, data tokens may be partially overlapping. In other
words, in some cases, at least a portion of the information
included in one data token may also be included in another
datatoken. Advantageously, in certain embodiments, by over-
lapping data tokens it is possible to use varying contexts to
determine if a data token corresponds to sensitive data. For
example, if one set of data tokens includes a number of
names, set of data tokens may not be identified as sensitive.
However, a second set of data tokens that includes the names
as well as a set of nine digit numbers may be considered
sensitive data as the set of nine digit numbers could possibly
be Social Security numbers.

With some files, it is possible for there to exist a number of
duplicate data tokens for a particular file. Often it is sufficient
for a file to include one data token that include sensitive data
for the file to be identified as sensitive and to be included with
a set of files for encryption. Thus, in such cases, the duplicate
data tokens may be filtered from the set of data tokens deter-
mined at the block 1504. However, in some cases, certain files

US 9,405,928 B2

81

may be considered more sensitive than other files and may be
treated differently. For example, a first set of sensitive files
may be encrypted using one algorithm and a second set of
sensitive files is considered more sensitive than the first set of
sensitive files may be encrypted using another algorithm or
maybe twice encrypted. Thus, in such cases, the duplicate
data tokens may not be filtered from the set of data tokens.
Further, a count may be maintained from the number of data
tokens that include sensitive information.

The encryption rules generated using the process 1500 may
be used to determine whether a file is to be encrypted when
the file is stored at the primary storage device 960. Alterna-
tively, or in addition, the encryption rules may be used to
determine whether to encrypt a file before or as part of a
backup storage process to a secondary storage system.
Example Content-Based Encryption Process

FIG. 16 illustrates an example embodiment of a content-
based encryption process. The process 1600 can be imple-
mented, at least in part, by any system that can automatically
determine whether to encrypt a file based on the content of the
file without receiving input from a user. For example, the
process 1600, in whole or in part, can be implemented by the
file system data agent 904, the content analyzer 1402, the
encryption rules generator 1404, the encryption rules engine
926, file monitor 930, and the encryption module 922, to
name a few. Although any number of systems, in whole or in
part, can implement the process 1600, to simplify discussion,
portions of the process 1600 will be described with reference
to particular systems.

The process 1600 begins at block 1602 where, for example,
the file monitor 930 monitors file creation or modification
activity. This file creation or modification activity can include
the creation of a new file, the copying of a file to create a new
instance of the file, write activity for modifying the file, or any
other activity that results in the creation of a file or the modi-
fication ofafile. The block 1602 may also include one or more
of the embodiments described with respect to the block 302.
For example, the block 1602 may include monitoring of file
activity at the primary storage device 960 or at another storage
device accessible by the client computing device 1450.

At decision block 1604, the file monitor 930 determines
whether a file creation or modification event is detected. If
such an event is not detected, the file monitor 930 continues to
monitor activity at the block 1602. If a file creation or modi-
fication event is detected, the encryption rules engine 926
accesses a set of encryption rules from, for example, the
encryption rules repository 908 at the block 1606.

Atblock 1608, the content analyzer 1402 uses a number of
natural language processing algorithms to determine a set of
data tokens for the file associated with the file creation or
modification event detected at the decision block 1604. The
block 1608 may include one or more of the embodiments
described with respect to the block 1504.

The encryption rules engine 926 applies the set of encryp-
tion rules to the set of data tokens to determine whether to
protect the file at block 1610. In certain implementations, the
encryption rules engine 926 may identify the encryption rule
to apply by performing a pattern recognition process using
the set of data tokens determined at the block 1608. The
encryption rules engine 926 may match the data tokens, or a
subset of the data tokens, to patterns associated with particu-
lartypes of files. If the pattern of data tokens matches a pattern
associated with a particular file type that is also associated
with an encryption rule, then the encryption rules engine 926
may apply the identified encryption rule to the file to deter-
mine whether the file is to be protected. Applying the identi-
fied encryption rule may include comparing a set of keywords

10

15

20

25

30

35

40

45

50

55

60

65

82

or identified tokens included in the encryption rule, to the set
of data tokens associated with the file. If the set of data tokens
for the file include a threshold number of percentage of data
tokens that match the keywords or data tokens included in the
encryption rule, then the file may be identified for protection
as discussed below.

In some cases, the block 1610 may include identifying a
subset of encryption rules to apply to the set of data tokens
based on context rules associated with each of the encryption
rules and the applicable context of the file. The context rules
may be based on a number of factors including a file type, the
user, a file location (e.g., directory), geographic and/or net-
work location of the client computing device 1450, the type of
file creation or modification event, and the like. For example,
if it is determined that the client computing device 1450 is
located in a public space (e.g., a geographic and/or network
location not controlled by an entity that owns the client com-
puting device 1450) then a different encryption rule may be
applied to the file that if the client computing device 1450 is
located in the building controlled by an entity that owns the
client computing device 1450.

At decision block 1612, encryption rules engine 926 deter-
mines if the file is to be protected based at least in part on the
result of the application of the set of encryption rules at the
block 1610. In some embodiments, the process 1600 may
include requesting that a user (e.g., an administrator) confirm
whether the file is to be protected. Advantageously, in certain
embodiments, by requesting that a user confirm the results of
the application of the encryption rules on the file, the encryp-
tion rules can be improved or made more accurate over time.
For example, the user indicates that the determination of the
encryption rules engine 926 is inaccurate, the file can be
added to the set of files used to generate the encryption rules.
The process 1500 can then be repeated with the updated set of
training files. In some cases, the process 1500 is not repeated
in its entirety, but instead one or more encryption rules that
generated a contrary result to the user’s indication of the
status of the file (e.g., protected or unprotected) may be regen-
erated or modified based on the addition of the file to the set
of training files.

Ifit is determined at the decision block 1612 that the file is
not to be protected the process returns to the block 1602
where the file monitor 930 continues to monitor file creation
and/or modification activity. If the encryption rules engine
926 determines that the file is to be protected, encryption
module 922 encrypts the file at the block 1614. Encrypting the
file can include performing the encryption processes
described herein. For example, encrypting the file can include
performing the process 1050 described above with respect to
the FIG. 10B.

In some cases, encrypting the file at the block 1614 may
include performing a second encryption process for a file that
is already encrypted. For example, a user may encrypt the file
using an encryption key included in a certificate associated
with the user. However, continuing the example, if it is deter-
mined that the file should be protected using the process 1600,
the encryption module 922 may encrypt the encrypted file
using an encryption key included in a certificate associated
with an entity that employs the user or owns the information
in the file. Similarly, if an attempt is made by an authorized
user and/or device to access the protected file after it is
encrypted, the file may be decrypted using an encryption key
included in the certificate, which may be a different key if the
encryption uses asymmetric keys, or the same key if the
encryption uses symmetric keys.

In some embodiments, the block 1614 is performed during
particular contexts, but not during other contexts. For

US 9,405,928 B2

83

example, the block 1614 may be performed when a file is
copied, but not when the file is accessed for viewing or read-
ing. As a second example, the block 1614 may be performed
when the client computing device 1450 leaves a particular
geographic area, but not when the client computing device
1450 remains the particular geographic area. Performing con-
text-based encryption is described in more detail below with
respect to FIG. 17.

Optionally, the encryption rules engine 926 may identify or
tag the file as protected at the block 1616. The file may be
identified as protected by, for example, tagging or labeling the
file, or by modifying the name or an icon associated with the
file. In some embodiments, the block 1616 may be supertlu-
ous because it can be determined that the file is protected
based on whether the file is encrypted. However, in some
embodiments, determining whether the file is encrypted may
not be sufficient for determining that the file has been identi-
fied as protected. For example, if a user encrypts the file, then
it may not be possible to determine the file was identified as
protected using the process 1600. As another example, a file
that is identified as protected may in some cases be kept
unencrypted based on a context associated with the file. For
instance the file may be encrypted when accessed on a per-
sonal or mobile device, but may be kept in the clear on aserver
located at a facility of an entity that controls file.

In some embodiments, a file that is identified as protected
may be associated with restricted access settings. For
example, a file that is identified as protected may be acces-
sible for viewing, the may be prevented from being copied. In
such cases, a user may access the file using, for example, an
email application and a message may be presented to the user
informing the user that the file is protected and cannot be
copied or shared. However, the user may still be able to access
the file for reading via a word processing application, but may
still not be prevented from saving the file in a location external
to the device storing the copy of the file accessed by the user.

In some embodiments, if a file creation or modification
event is detected at the decision block 1604, the file may be
provided to a server (not shown) or other computing system
that performs some or all of the remainder of the process
1600. For example, a protected data server may receive the
file and make the determination that the file is to be protected.
The server may then encrypt the file, or label it as protected
and provide the labelled file to the client computing device
1450 for encryption or further processing.

In an example use case, a file is determined to have been
created or modified at the decision block 1604. The encryp-
tion rules engine 926 accesses a set of encryption rules at the
block 1606. Further, the content analyzer 1402 uses one or
more natural language processing algorithms to device the
file into a set of data tokens that each include a portion of the
file. The data tokens may each be unique or may be overlap-
ping, at least in part.

The natural language processing algorithms may include
identifying and removing a set of stop words (e.g., articles,
linking verbs, infinitives, etc.). In some cases, the set of stop
words can include a set of words identified by a user (e.g., an
administrator) and in some cases, may include application or
entity-specific sets of words. For example, one entity may
include a set of colors in the set of stop words as these words
may be deemed unimportant for content analysis, but another
entity (such as a fashion design entity) may notinclude the set
of colors in the set of stop words.

Further the natural language processing algorithms may
include parsing the file into word or phrase-based tokens and
determining topics related to each of the data tokens. More-
over, word sense disambiguation may be performed to deter-

10

15

20

25

30

35

40

45

50

55

60

65

84

mine the meaning of words in given contexts. In some cases,
the natural language processing algorithms may be repeated
on an iterative basis to adjust the data token identification
based on the result of applying the encryption rules. In par-
ticular, the natural language processing may be repeated ifthe
encryption rules engine 926 cannot determine with a degree
of certainty whether the file satisfies one or more of the
encryption rules.

Continuing the above example, the result of the natural
language processing algorithms may include the formation of
a set of data tokens that include social security numbers,
credit card numbers, and account numbers with the entity that
owns the file. Although in some cases these data tokens may
be directly applied to the encryption rules, in other cases, the
data tokens may first be categorized (e.g., SSN, credit card
data, entity account number) and the data token categories
may be applied to the encryption rules.

In this particular use case example, the data token types are
compared to data token types included on a list of data token
types for each encryption rule. It may then be determined that
the data token types match those included on the list of data
token types for one of the encryption rules. As such, the file is
identified at the decision block 1612 as a file to be protected.
The file may then be encrypted at block 1614 and the file may
be identified or marked as protected at the block 1616. Mark-
ing the file as protected may include tagging the file and/or
marking the file in an index or other data structure as pro-
tected.

In some embodiments, breaking up a file into a set of data
tokens can speed up determining whether to encrypt a file. For
example, some encryption rules may identify a file as includ-
ing sensitive information if a single data token is identified as
including sensitive information. Thus, in such cases, upon the
identification of a single data token including sensitive infor-
mation or being of a type that includes sensitive information,
processing of the file to determine whether it includes sensi-
tive information can cease. Therefore, the processing time of
files to determine whether they include sensitive information
can in some cases be reduced. Although not limited to large
files, the reduced processing time may particularly occur with
respect to large files (e.g., 500 MB, 1 GB, 10 GB files, etc.).
Example Context-Based Encryption Process

FIG. 17 illustrates an example embodiment of a context-
based encryption process. The process 1700 can be imple-
mented, at least in part, by any system that can determine
whether to encrypt a protected file based on a context asso-
ciated with the protected file. For example, the process 1700,
in whole or in part, can be implemented by the file system data
agent 904, the content analyzer 1402, the encryption rules
generator 1404, the encryption rules engine 926, file monitor
930, and the encryption module 922, to name a few. Although
any number of systems, in whole or in part, can implement the
process 1700, to simplify discussion, portions of the process
1700 will be described with reference to particular systems.

The process 1700 begins at block 1702 where, for example,
the encryption rules engine 926 accesses a set of encryption
rules from, for example, the encryption rules repository 908.
Typically, the set of encryption rules are a subset of encryp-
tion rules that were applied during performance of the process
1600 to determine that a file is to be protected. Further, the
subset of encryption rules may each be associated with one or
more contexts. When a context associated with a particular
encryption rule is satisfied by the protected file, the protected
file may be identified for encryption. The context may include
a geographic and/or network location of a client computing
device 1450 accessing the file, a geographic and/or network
location of a primary storage device 960 with a copy of the

US 9,405,928 B2

85

file, a user accessing the file, the type of access event associ-
ated with the file (e.g., read, write, copy, move, etc.), and the
like.

At block 1704, the file monitor 930 monitors the file con-
text for a protected file. Monitoring the file context of the
protected file can include monitoring which user or users
access the file, the geographic and/or network location of the
computing device accessing the file, the type of computing
device accessing the file, and the type of file access. Further,
in some cases, monitoring the file context may include moni-
toring the context of the device storing the file, regardless of
whether the file is being accessed. For instance, the geo-
graphic location of the client computing device 1450 may be
monitored using GPS technology or some other appropriate
mechanism.

At the decision block 1706, encryption rules engine 926
determines whether the file context satisfies an encryption
rule associated with the file. Generally, although not neces-
sarily, the encryption rules associated with the file is the
encryption rule that designated the file as a protected file. If
the file context does not satisty the encryption rule associated
with the file, then the process 1700 may return to block 1704
to continue to monitor the file context.

If'the encryption rules engine 926 determines that the deci-
sion block 1706 that the file context does satisfy the encryp-
tion rule, encryption module 922 encrypts the file at block
1708. Generally the encryption occurs automatically without
input from a user. However, in some cases, the user may be
informed that the file is being encrypted. Informing the user
that the file is being encrypted can include informing the user
as to why the file is being encrypted (e.g., because the user is
accessing a file from a public location). Although typically a
user cannot override the decision to encrypt the file, in some
cases some users, such as an administrator, can override the
decision file.

As an example use case, suppose that the set of encryption
rules accessed at the block 1702 indicate that protected files,
or a particular category of protected files (e.g., accounting
files with sensitive information), accessed by a computing
device located outside of an entity’s local area network
should always be encrypted. At block 1704, the file monitor
930 monitors the network location of the computing devices
accessing the protected files. Ifa particular computing device
accessing one of the protected files is outside of the entity’s
local area network, the file access may be denied or the file
may only be accessed in its encrypted form.

As a second example use case, suppose that the set of
encryption rules accessed at the block 1702 indicate that
protected files accessed by a mobile device should be denied.
At block 1704, the file monitor 930 monitors the device type
of devices attempting to access the protected files. If a par-
ticular computing device attempting to access one of the
protected files is a wireless device, the file may be encrypted
at the block 1708 and/or file access may be denied.

In some embodiments, the process 1700 may be modified
to monitor and control access to a file based on the file con-
text. In such embodiments, the file monitor 930 monitors file
access commands for a protected file as described, for
example, with respect to the block 1704. These file access
commands can include file write, file read, file copy, file
move, file delete, etc. In some cases, detecting a file access
command can include detecting an application attempting to
access the protected file. Upon detecting a file access com-
mand with respect to a protected file, the file monitor 930 or
a secure file access module 924 can determine whether a
context associated with the protected file and with a particular
encryption rule is satisfied. As previously described, the con-

10

15

20

25

30

35

40

45

50

55

60

65

86

text can include an identity of the user accessing the file, an
organization or department associated with the user, a geo-
graphic or network location of the computing device access-
ing the file, a time of day or day of the week, and, in some
cases, an application accessing the file.

Ifthe context is satisfied, the secure file access module 924
can enable execution of the file access command or prevent
access of the file access command based on the encryption
rule designating the file as a protected file. For example,
suppose the application accessing the file is an email appli-
cation and the user accessing the file is not a department head.
If this file context matches a file context of a particular
encryption rule that designates protected files to remain
encrypted within the file context, the secure file access mod-
ule 924 may reject the file access command or prevent the file
access command from being performed. As a second
example, suppose the application accessing the file is a pdf
viewer and the geographic location (e.g., a coffee shop, a
user’s house, etc.) of the device accessing the file is external
to a building of an entity (e.g., a defense company, an invest-
ment firm, etc.) that owns the file. If this file context matches
a file context of a particular encryption rule that designates
protected files as viewable, but not transferable, a file read
command may be performed, but a file write or file copy
command may not be performed.

If a particular encryption command indicates the file con-
text for a particular protected file permits the performance or
execution of a particular file access command (e.g., a fileread,
file write, file copy, file delete, etc.), the secure file access
module 924 may perform or permit performance of the par-
ticular file access command. If necessary (e.g., the file is
encrypted and the file access command is a file read), per-
forming the particular file access command may include
decrypting the protected file. The file may be decrypted by,
for example, the decryption module 928. The decryption
module 928 may access a certificate that includes a crypto-
graphic key (e.g., a public key) to obtain access to the cryp-
tographic key. The decryption module 928 may decrypt the
protected file using the cryptographic key enabling the file
access command to be performed on the decrypted file. The
certificate may be associated with a user who caused the file
access command to be issued, the computing device storing
or attempting to access the protected file, or an entity (e.g., an
employer) associated with the user and/or the file.

In some embodiments, file access may be permitted for a
particular file, but the preconditions for accessing the file may
differ based on the file context. For example, an encryption
rule may permit a file to be automatically decrypted and
accessed by a user using a workstation at the user’s employer
location (e.g., the user’s workplace). However, the encryption
rule may require that the user provide a password prior to
accessing the file is the user is accessing the file from amobile
device or at an external location (e.g., a restaurant or private
home).

Additional Embodiments

Certain embodiments described herein include a method
for automatically encrypting files. In some cases, the method
may be performed by computer hardware comprising one or
more processors. The method can include detecting access to
a first file, which may be stored in a primary storage system.
Further, the method can include determining whether the
access comprises a write access. In response to determining
that the access comprises a write access, the method can
include accessing file metadata associated with the first file
and accessing a set of encryption rules. In addition, the
method can include determining whether the file metadata
satisfies the set of encryption rules. In response to determin-

US 9,405,928 B2

87

ing that the file metadata satisfies the set of encryption rules,
the method can include encrypting the first file to obtain a first
encrypted file and modifying an extension of the first
encrypted file to include an encryption extension.

In some embodiments, a system for automatically encrypt-
ing files is disclosed. The system can include a primary stor-
age system configured to store a first file. In addition, the
system can include a file monitor comprising computer hard-
ware and configured to detect access to the first file and to
determine whether the access comprises a write access. Fur-
ther, the system can include an encryption rules repository
configured to store encryption rules. In addition, the system
can include an encryption rules engine comprising computer
hardware and configured to access file metadata associated
with the first file in response to the file monitor determining
that the access comprises a write access. The encryption rules
engine may be further configured to access a set of encryption
rules from the encryption rules repository and to determine
whether the file metadata satisfies the encryption rules. More-
over, the system may include an encryption module compris-
ing computer hardware and configured to encrypt the first file
to obtain a first encrypted file in response to the encryption
rules engine determining that the file metadata satisfies the
encryption rules. Further, the encryption module may be con-
figured to modify an extension of the first encrypted file to
include an encryption extension. In some cases, the computer
hardware may include multiple computing devices.

In certain embodiments, a method for displaying encrypted
files is disclosed. In some cases, the method may be per-
formed by computer hardware comprising one or more pro-
cessors. The method can include accessing an encrypted file,
which may be an encrypted version of an unencrypted file.
The unencrypted file may have an extension that is different
than an extension of the encrypted file. Further, the method
may include accessing metadata associated with the
encrypted file and determining a file type of the file based, at
least in part, on the metadata. In addition, the file can include
outputting for display a reference to the encrypted file based,
at least in part, on the file type. The reference to the encrypted
file may be configured to mimic, at least in part, the extension
of the unencrypted file.

Some embodiments of the present disclosure can include a
method for displaying encrypted files, which, in some cases,
may be performed by computer hardware comprising one or
more processors. This method can include accessing an
encrypted file that may be an encrypted version of a file.
Further, the method can include accessing metadata associ-
ated with the encrypted file and determining a file type of the
file based, at least in part, on the metadata. In addition, the
method may include outputting for display a reference to the
encrypted file based, at least in part, on the file type. This
reference to the encrypted file may be configured to mimic, at
least in part, a reference to the file.

Certain embodiments of the present disclosure include a
system for displaying encrypted files. The system can include
a display screen configured to output a user interface and an
interface agent comprising computer hardware. The interface
agent may be configured to access an encrypted file. The
encrypted file may be an encrypted version of an unencrypted
file, which may include an extension that is different than an
extension of the encrypted file. Further, the interface agent
may be configured to access metadata associated with the
encrypted file and determine a file type of the file based, at
least in part, on the metadata. Moreover, the interface agent
may be configured to output for display on the display screen
a reference to the encrypted file based, at least in part, on the

10

15

20

25

30

35

40

45

50

55

60

65

88

file type. The reference to the encrypted file may be config-
ured to mimic, at least in part, the extension of the unen-
crypted file.

In some embodiments, a method for automatically
decrypting files is disclosed. The method, in some cases, may
be performed by computer hardware comprising one or more
processors. In some instances, the method can include
authenticating a user based, at least in part, on authentication
information provided by the user. The method may further
include receiving a request to access a file stored in primary
storage and determining based, at least in part, on a file
extension of the file whether the file is an encrypted file. In
some instances, the encrypted file comprises a modified file
extension indicating that the encrypted file is encrypted. Fur-
ther, in some instances, a reference to the file is displayed to
the user as an unencrypted file regardless of whether the file is
encrypted. In response to determining that the file is an
encrypted file, the method can include determining whether
the user is authorized to access the file based, at least in part,
on the authentication information without prompting the user
for the authentication information in response to the request
to access the file. In response to determining that the user is
authorized to access the file, the method may include decrypt-
ing the file to obtain a decrypted file and providing the user
with access to the decrypted file.

In certain embodiments of the present disclosure, a system
for automatically decrypting files is disclosed. The system
can include an authentication system comprising computer
hardware and configured to authenticate a user based, at least
in part, on authentication information provided by the user.
Further, the system may include a primary storage configured
to store encrypted files and unencrypted files, and a secure file
access module comprising computer hardware and config-
ured to receive a request to access a file stored in the primary
storage. The secure file access module may be further con-
figured to determine based, at least in part, on a file extension
of'the file whether the file is an encrypted file. The encrypted
file may include a modified file extension indicating that the
encrypted file is encrypted. In some cases, a reference to the
file is displayed to the user as an unencrypted file regardless of
whether the file is encrypted. In addition, the secure file
access module may be configured to determine whether the
user is authorized to access the file based, at least in part, on
the authentication information without prompting the user for
the authentication information in response to the request to
access the file. The system may further include a decryption
module comprising computer hardware and configured to
decrypt the file to obtain a decrypted file in response to the
secure file access module determining that the file is an
encrypted file and the user is authorized to access the file. In
addition, the system can include an interface agent compris-
ing computer hardware and configured to provide the user
with access to the decrypted file obtained by the decryption
module in response to the secure file access module deter-
mining that the file is an encrypted file and the user is autho-
rized to access the file.

Some embodiments of the present disclosure include a
method for backing up a file, which may be performed by a
computing system comprising one or more processors. The
method can include receiving, at a media agent, a command
from a storage manager to backup a file at a secondary storage
device. Further, the method can include receiving the file
from a data agent and determining whether the file is an
encrypted file. In response to determining that the file is an
encrypted file, the method can include identifying an encryp-
tion algorithm used to encrypt the file and storing metadata
associated with the file. The metadata may include an identity

US 9,405,928 B2

89

of'the encryption algorithm. Further, the method may include
storing the file at the secondary storage device without per-
forming an encryption process. In response to determining
that the file is not an encrypted file, the method can include
encrypting the file to obtain an encrypted file and storing the
encrypted file at the secondary storage device.

Certain embodiments of the present disclosure include a
system for backing up a file. The system can include a primary
storage device configured to store a set of files and a second-
ary storage device configured to store a backup of a file from
the set of files. Further, the system can include a storage
manager comprising computer hardware and configured to
initiate the backup of the file. Initiating the backup of the file
can include sending a first backup command to a data agent.
In addition, the system can include a data agent comprising
computer hardware and configured to provide the file to the
media agent based, at least in part, to receiving the first
backup command. Moreover, the system can include a media
agent comprising computer hardware and configured to
receive the file from the data agent and determine whether the
file is an encrypted file. In response to determining that the file
is an encrypted file, the media agent may store the file at the
secondary storage device without performing an encryption
process. Further, in response to determining that the file is not
an encrypted file, the media agent may encrypt the file to
obtain an encrypted file and store the encrypted file at the
secondary storage device.

In some embodiments, a method for restoring a file from
secondary storage is disclosed. This method, in some cases,
may be performed by a computing system comprising one or
more processors. In some instances, the method includes
receiving, at a media agent, a command from a storage man-
ager to restore a file from a secondary storage device to a
recipient system. Further, the method may include accessing
the secondary storage device to retrieve the file and accessing
metadata associated with the file. In addition, the method may
include determining based, at least in part, on the metadata
whether the file was encrypted by the media agent. In
response to determining that the media agent encrypted the
file, the method can include decrypting the file to obtain an
unencrypted file and providing the recipient system with
access to the unencrypted file.

In certain embodiments, a system for restoring a file from
secondary storage is disclosed. This system can include a
secondary storage device configured to store a backup of a
file. In some instance, the backup of the file is an encrypted
file. Further, the system can include a storage manager com-
prising computer hardware and configured to initiate the res-
toration of the file. Initiating the restoration of the file can
include sending a restore command to a media agent. More-
over, the system can include a media agent comprising com-
puter hardware and configured to retrieve the file from the
secondary storage device in response to receiving the restore
command. The media agent may also access metadata asso-
ciated with the file and determine based, at least in part, on the
metadata whether the file was encrypted by the media agent.
In response to determining that the media agent encrypted the
file, the media agent may decrypt the file to obtain an unen-
crypted file and provide a recipient system with access to the
unencrypted file.

Some embodiments of the present disclosure include a
method for restoring a file from secondary storage. This
method, in some cases, may be performed by a computing
system comprising one or more processors. In some
instances, the method includes receiving, at a media agent, a
command from a storage manager to restore a file from a
secondary storage device to a recipient system. Further, the

10

15

20

25

30

35

40

45

50

55

60

65

90

method may include accessing the secondary storage device
to retrieve the file and accessing metadata associated with the
file. In addition, the method may include determining based,
at least in part, on the metadata whether the file is encrypted.
In response to determining that the file is encrypted, the
method can include modifying the file to mimic, at least in
part, an unencrypted version of the file without decrypting the
file and providing the recipient system with access to the
modified file.

Certain embodiments of the present disclosure include a
system for restoring a file from secondary storage. The sys-
tem can include a secondary storage device configured to
store a backup of a file. In some cases, the backup of the file
is an encrypted file. Further, the system can include a storage
manager comprising computer hardware and configured to
initiate the restoration of the file. Initiating the restoration of
the file can include sending a restore command to a media
agent. In addition, the system can include a media agent
comprising computer hardware and configured to retrieve the
file from the secondary storage device in response to receiv-
ing the restore command. Moreover, the media agent may be
configured to access metadata associated with the file and to
determine based, at least in part, on the metadata whether the
file is encrypted. In response to determining that the file is
encrypted, the media agent may be configured to modify the
file to mimic, at least in part, an unencrypted version of the file
without decrypting the file. Further, the media agent may be
configured to provide a recipient system with access to the
modified file.

In certain embodiments of the present disclosure, a method
for automatically encrypting files is disclosed. The method
may be performed by a computing system comprising one or
more processors. In some cases, in response to determining
that file metadata associated with a file stored in a primary
storage system satisfies a set of encryption rules, the method
includes encrypting the file to obtain an encrypted file and
modifying an extension of the encrypted file to include an
encryption extension. Encrypting the file comprises obtain-
ing a data encryption key and encrypting the file with the data
encryption key to obtain the encrypted file. Further, encrypt-
ing the file includes identifying a set of users who are autho-
rized to access the file. For each user from the set of users,
encrypting the file further includes encrypting a copy of the
data encryption key for the user to obtain an encrypted copy
of'the data encryption key and embedding the encrypted copy
of the data encryption key with the encrypted file.

In some embodiments of the present disclosure, a system is
presented for automatically encrypting files. The system can
include a primary storage system configured to store a file and
an encryption rules system comprising computer hardware
and configured to store a set of encryption rules. Further, the
system may include a data agent comprising computer hard-
ware. The data agent may be is associated with a file system
of the system. Further, the data agent may be configured to
access the set of encryption rules from the encryption rules
system and determine based, at least in part, on the set of
encryption rules that the file is to be encrypted. In addition,
the system can generate a data encryption key and encrypt the
file with the data encryption key to obtain an encrypted file. In
addition, the system may identify a set of users who are
authorized to access the file. For each of the users from the set
of users, the data agent may be further configured to encrypt
a copy of the data encryption key for the user to obtain an
encrypted copy of the data encryption key and include the
encrypted copy of the data encryption key with the encrypted
file.

US 9,405,928 B2

91

In certain embodiments of the present disclosure, a method
is presented for backing up a primary storage system. The
method may be performed by a computing system compris-
ing one or more processors. The method may include identi-
fying a file stored at a primary storage system for backup to a
secondary storage system and determining whether the file is
an encrypted file. In response to determining that the file is an
encrypted file, the method may include extracting an
encrypted data encryption key from the file and decrypting
the encrypted data encryption key to obtain a data encryption
key. Moreover, the method may include decrypting the file
using the data encryption key to obtain a decrypted file and
providing the decrypted file to the secondary storage system
for backup, thereby enabling the secondary storage system to
more efficiently store files at the secondary storage system.

Some embodiments of the present disclosure describe a
system for backing up a primary storage system. The system
can include a primary storage device configured to store a set
of files and a data agent comprising computer hardware. The
data agent may be configured to identify a file from the set of
files for backup to a secondary storage system and to deter-
mine whether the file is an encrypted file. In response to
determining that the file is an encrypted file, the data agent
may be further configured to extract an encrypted data
encryption key from the file and to decrypt the encrypted data
encryption key to obtain a data encryption key. Further, the
data agent may be configured to decrypt the file using the data
encryption key to obtain a decrypted file and to provide the
decrypted file to the secondary storage system for backup,
thereby enabling the secondary storage system to more effi-
ciently store files at the secondary storage system.
Terminology

Conditional language, such as, among others, “can,”
“could,” “might,” or “may,” unless specifically stated other-
wise, or otherwise understood within the context as used, is
generally intended to convey that certain embodiments
include, while other embodiments do not include, certain
features, elements and/or steps. Thus, such conditional lan-
guage is not generally intended to imply that features, ele-
ments and/or steps are in any way required for one or more
embodiments or that one or more embodiments necessarily
include logic for deciding, with or without user input or
prompting, whether these features, elements and/or steps are
included or are to be performed in any particular embodi-
ment.

Unless the context clearly requires otherwise, throughout
the description and the claims, the words “comprise,” “com-
prising,” and the like are to be construed in an inclusive sense,
as opposed to an exclusive or exhaustive sense; that is to say,
in the sense of “including, but not limited to.” As used herein,
the terms “connected,” “coupled,” or any variant thereof
means any connection or coupling, either direct or indirect,
between two or more elements; the coupling or connection
between the elements can be physical, logical, or a combina-
tion thereof. Additionally, the words “herein,” “above,”
“below,” and words of similar import, when used in this
application, refer to this application as a whole and not to any
particular portions of this application. Where the context
permits, words in the above Detailed Description using the
singular or plural number may also include the plural or
singular number respectively. The word “or” in reference to a
list of two or more items, covers all of the following interpre-
tations of the word: any one of the items in the list, all of the
items in the list, and any combination of the items in the list.
Likewise the term “and/or” in reference to a list of two or
more items, covers all of the following interpretations of the

20

40

45

55

92

word: any one of the items in the list, all of the items in the list,
and any combination of the items in the list.

Depending on the embodiment, certain operations, acts,
events, or functions of any of the algorithms described herein
can be performed in a different sequence, can be added,
merged, or left out altogether (e.g., not all are necessary for
the practice of the algorithms). Moreover, in certain embodi-
ments, operations, acts, functions, or events can be performed
concurrently, e.g., through multi-threaded processing, inter-
rupt processing, or multiple processors or processor cores or
on other parallel architectures, rather than sequentially.

Systems and modules described herein may comprise soft-
ware, firmware, hardware, or any combination(s) of software,
firmware, or hardware suitable for the purposes described
herein. Software and other modules may reside and execute
on servers, workstations, personal computers, computerized
tablets, PDAs, and other computing devices suitable for the
purposes described herein. Software and other modules may
be accessible via local memory, via a network, via a browser,
or via other means suitable for the purposes described herein.
Data structures described herein may comprise computer
files, variables, programming arrays, programming struc-
tures, or any electronic information storage schemes or meth-
ods, or any combinations thereof, suitable for the purposes
described herein. User interface elements described herein
may comprise elements from graphical user interfaces, inter-
active voice response, command line interfaces, and other
suitable interfaces.

Further, the processing of the various components of the
illustrated systems can be distributed across multiple
machines, networks, and other computing resources. In addi-
tion, two or more components of a system can be combined
into fewer components. Various components of the illustrated
systems can be implemented in one or more virtual machines,
rather than in dedicated computer hardware systems and/or
computing devices. Likewise, the data repositories shown can
represent physical and/or logical data storage, including, for
example, storage area networks or other distributed storage
systems. Moreover, in some embodiments the connections
between the components shown represent possible paths of
data flow, rather than actual connections between hardware.
While some examples of possible connections are shown, any
of'the subset of the components shown can communicate with
any other subset of components in various implementations.

Embodiments are also described above with reference to
flow chart illustrations and/or block diagrams of methods,
apparatus (systems) and computer program products. Each
block of the flow chart illustrations and/or block diagrams,
and combinations of blocks in the flow chart illustrations
and/or block diagrams, may be implemented by computer
program instructions. Such instructions may be provided to a
processor of a general purpose computer, special purpose
computer, specially-equipped computer (e.g., comprising a
high-performance database server, a graphics subsystem,
etc.) or other programmable data processing apparatus to
produce a machine, such that the instructions, which execute
via the processor(s) of the computer or other programmable
data processing apparatus, create means for implementing the
acts specified in the flow chart and/or block diagram block or
blocks.

These computer program instructions may also be stored in
a non-transitory computer-readable memory that can direct a
computer or other programmable data processing apparatus
to operate in a particular manner, such that the instructions
stored in the computer-readable memory produce an article of
manufacture including instruction means which implement
the acts specified in the flow chart and/or block diagram block

US 9,405,928 B2

93

or blocks. The computer program instructions may also be
loaded onto a computing device or other programmable data
processing apparatus to cause a series of operations to be
performed on the computing device or other programmable
apparatus to produce a computer implemented process such
that the instructions which execute on the computer or other
programmable apparatus provide steps for implementing the
acts specified in the flow chart and/or block diagram block or
blocks.

Any patents and applications and other references noted
above, including any that may be listed in accompanying
filing papers, are incorporated herein by reference. Aspects of
the invention can be modified, if necessary, to employ the
systems, functions, and concepts of the various references
described above to provide yet further implementations of the
invention.

These and other changes can be made to the invention in
light of the above Detailed Description. While the above
description describes certain examples of the invention, and
describes the best mode contemplated, no matter how
detailed the above appears in text, the invention can be prac-
ticed in many ways. Details of the system may vary consid-
erably inits specific implementation, while still being encom-
passed by the invention disclosed herein. As noted above,
particular terminology used when describing certain features
or aspects of the invention should not be taken to imply that
the terminology is being redefined herein to be restricted to
any specific characteristics, features, or aspects of the inven-
tion with which that terminology is associated. In general, the
terms used in the following claims should not be construed to
limit the invention to the specific examples disclosed in the
specification, unless the above Detailed Description section
explicitly defines such terms. Accordingly, the actual scope of
the invention encompasses not only the disclosed examples,
but also all equivalent ways of practicing or implementing the
invention under the claims.

To reduce the number of claims, certain aspects of the
invention are presented below in certain claim forms, but the
applicant contemplates the various aspects of the invention in
any number of claim forms. For example, while only one
aspect of the invention is recited as a means-plus-function
claim under 35 U.S.C sec. 112(f) (AIA), other aspects may
likewise be embodied as a means-plus-function claim, or in
other forms, such as being embodied in a computer-readable
medium. Any claims intended to be treated under 35 U.S.C.
§112(f) will begin with the words “means for”, but use of the
term “for” in any other context is not intended to invoke
treatment under 35 U.S.C. §112(f). Accordingly, the appli-
cant reserves the right to pursue additional claims after filing
this application, in either this application or in a continuing
application.

What is claimed is:

1. A data storage system comprising:

a content analyzer comprising computer hardware, the

content analyzer configured to:

access a set of training files that include content desig-
nated as sensitive information; and

use one or more processing algorithms with respect to
the set of training files to obtain a set of data tokens for
each training file, each of the data tokens from the set
of data tokens comprising a portion of a training file
from the set of training files, the portion of the training
file comprising content included in the training file, at
least some of the training files including at least some
of the sensitive information;

an encryption rules generator comprising computer hard-

ware, the encryption rules generator configured to:

20

25

30

40

45

55

65

94

use one or more algorithms to generate a set of encryp-
tion rules based on the set of data tokens obtained for
each training file, wherein at least some of the set of
encryption rules are configured to identify a file to
encrypt based at least in part on a correspondence
between portions of the file and at least some of the set
of data tokens;

generate a prospective encryption rule based on an
aggregated set of data tokens, the aggregated set of
data tokens based on the set of data tokens for each
training file;

perform the prospective encryption rule using the set of
training files:

determine a number of training files from the set of
training files identified for encryption based on the
prospective encryption rule; and

responsive, at least in part, to the number of training files
identified for encryption satisfying a threshold, add-
ing the prospective encryption rule to the set of
encryption rules; and

an encryption processor comprising computer hardware,

the encryption processor configured to encrypt the file
based at least in part on one of the encryption rules from
the set of encryption rules.

2. The data storage system of claim 1, further comprising
an encryption rules repository configured to store the set of
encryption rules, wherein the encryption rules repository is
accessible by one or more computing systems.

3. The data storage system of claim 1, wherein the encryp-
tion rules generator is further configured to:

determine a context condition for an encryption rule of the

set of encryption rules, the context condition identifying
when to apply the encryption rule to the file; and
associate the context condition with the encryption rule.

4. The data storage system of claim 3, wherein the context
condition comprises at least one of an identity of a user, an
identity of a department that includes the user within an
entity, a geographic location of a computing device storing
the file, a network location of a computing device storing the
file, and a device type of the computing device.

5. The data storage system of claim 1, wherein the encryp-
tion rules generator is configured to determine an encryption
rule based on the set of data tokens obtained for a plurality of
training files.

6. The data storage system of claim 1, wherein the encryp-
tion rules generator is further configured to:

present the prospective encryption rule to a user;

receive an input from the user responsive to presenting the

prospective encryption rule to the user; and

determine whether to include the prospective encryption

rule in the set of encryption rules based at least in part on
the input received from the user.

7. The data storage system of claim 1, wherein the content
analyzer is further configured to remove a data token from a
set of data tokens of a training file based on an identified set of
non-sensitive data tokens.

8. The data storage system of claim 1, further comprising:

a file monitor configured to monitor creation of the file; and

an encryption rules engine configured to determine

whether the file satisfies an encryption rule from the set
of encryption rules.

9. A method of automatically generating encryption rules
using machine learning techniques, the method comprising:

accessing, by a rules generation system comprising com-

puter hardware, a set of one or more training files that
include content designated as sensitive information;

US 9,405,928 B2

95

applying, by the rules generation system, one or more
processing algorithms to each training file included in
the set of training files to obtain a set of data tokens for
each training file, wherein each of the set of data tokens
for a training file corresponds to a portion of the training
file, the portion of the training file comprising content
included in the training file, at least some of the training
files including at least some of the sensitive information,
wherein applying the one or more processing algorithms
to the set of data tokens comprises:
generating a prospective encryption rule based on the set
of data tokens;
performing the prospective encryption rule with respect
to the set of training files;
determining a percentage of training files from the set of
training files identified for encryption using the pro-
spective encryption rule; and
responsive to the percentage of training files identified
for encryption satisfying a threshold, adding the pro-
spective encryption rule to the set of encryption rules;
applying, by the rules generation system, one or more
algorithms to the set of data tokens for each training file
to generate a set of encryption rules for identifying files
with sensitive information, wherein at least some of the
set of encryption rules are configured to identify a file to
encrypt based at least in part on a correspondence
between portions of the file and at least some of the set of
data tokens; and
storing the set of encryption rules in an encryption rules
repository accessible for one or more systems for deter-
mining whether to encrypt the file.

10. The method of claim 9, wherein the one or more pro-
cessing algorithms comprise natural language processing
algorithms.

11. The method of claim 9, wherein the one or more algo-
rithms comprise heuristic algorithms.

12. The method of claim 9, wherein at least one of the one
or more processing algorithms comprises a natural language
processing algorithm and wherein applying the one or more
processing algorithms comprises performing at least one of
the following natural language processing tasks: automatic
summarization, coreference resolution, discourse analysis,

10

25

40

96

machine translation, morphological segmentation, named
entity recognition, natural language understanding, optical
character recognition, part-of-speech tagging, parsing, rela-
tionship extraction, sentence boundary disambiguation, sen-
timent analysis, topic segmentation and recognition, word
segmentation, word sense disambiguation, singular value
decomposition, latent semantic analysis, latent Dirichlet allo-
cation, pachinko allocation, and probabilistic latent semantic
analysis.

13. The method of claim 9, wherein applying the one or
more algorithms to the set of data tokens for each training file
comprises applying the one or more algorithms on a file-by-
file basis, separately to each set of data tokens.

14. The method of claim 9, wherein applying the one or
more algorithms to the set of data tokens for each training file
comprises applying the one or more algorithms to a cumula-
tive set of data tokens formed by combining the sets of data
tokens from a plurality of training files.

15. The method of claim 9, further comprising presenting
the set of encryption rules to a user for confirmation, wherein
storing the set of encryption rules comprises storing encryp-
tion rules from the set of encryption rules confirmed by the
user.

16. The method of claim 9, further comprising filtering data
tokens identified as non-sensitive by a user from the set of
data tokens for each training file prior to applying the one or
more algorithms.

17. The method of claim 9, further comprising:

monitoring file creation and/or file modification activity;

in response to detecting a file creation and/or modification
event with respect to the file, determining whether the
file satisfies an encryption rule from the set of encryption
rules; and

inresponse to determining that the file satisfies the encryp-

tion rule from the set of encryption rules, identifying the
file as protected.

18. The method of claim 17, further comprising:

determining whether the file satisfies a context condition

associated with the encryption rule; and

in response to determining that the context condition is

satisfied, encrypting the file.

#* #* #* #* #*

